利用nerfstudio 构建自己的nerf模型,数据集poster
2024-04-10 20:24:09 714.97MB 数据集 Nerf 三维重建 计算机视觉
1
内含3个子文件夹,未进行训练集与测试集的分类。分别包含了Annotations文件夹,xml文件的文档,ImageSets文件夹,还有最主要的JPEGImages文件夹,里面是我们本次训练所必须的图片数据集。拿到这个压缩包后,我们还需要对其进行一个大致的训练集与测试集的分类,以此来方便之后的每一次训练。 另外需要注意的是,该压缩包里的Annotations文件夹里的xml文件,需要转换为txt文本文件。 感谢下载。
2024-04-09 15:39:38 316.14MB 计算机视觉 数据集
1
matlab开发-代数多重网格线性分流器。这个程序求解ax=b,其中a是m矩阵。测试用例可以在amg_test.m中找到。
2024-04-09 10:35:42 4.32MB 图像处理与计算机视觉
1
分享课程——ONNXRUNTIME计算机视觉模型部署与加速教程
2024-03-29 15:59:39 213B 计算机视觉 课程资源
1
分享课程——OpenVINO2022计算机视觉模型部署与加速课程,附源码+模型文件+思维导图。
2024-03-29 15:56:49 804B 计算机视觉 课程资源
1
与传统的Transformer相比,Swin Transformer通过采用分层结构和窗口内注意力机制,实现了更高效的计算和更好的适用性于图像识别、目标检测和语义分割等任务 1. 层次化特征表示 Swin Transformer通过构建层次化的特征表示,使模型能够捕获从细粒度到粗粒度的不同层次的视觉信息,这对于处理图像中的多尺度对象至关重要 2. 移动窗口的注意力机制 不同于传统Transformer中的全局自注意力机制,Swin Transformer采用了局部窗口内的自注意力计算。通过这种方式,它显著降低了计算复杂度,并且通过窗口间的移动操作保持了全局上下文的连续性 3.动态调整的窗口 Swin Transformer设计了一种机制来动态调整注意力窗口的大小,这种灵活性允许模型根据不同层次的特征和任务需求调整其感受野,从而更有效地处理图像信息 4. 跨窗口连接 为了解决局部窗口限制内的信息孤岛问题,Swin Transformer引入了跨窗口的连接方式,通过这种方式可以在不增加计算负担的情况下,有效地整合全局信息
1
这个项目是一个基于OpenCV和TensorFlow的实时手势识别与图片特效。通过结合这两个强大的开源库,我们成功地打造了一套多功能的解决方案,旨在为用户提供沉浸式的交互体验。 首先,通过OpenCV实现了实时手势识别,使得系统能够捕捉用户手势的细微动作。这使得用户无需任何物理设备,只需简单地使用摄像头,就能够与系统进行直观、自然的交互。TensorFlow的强大深度学习功能在背后支持,确保手势识别的准确性和稳定性。不仅仅是基本的手势,系统还支持更复杂的手势序列,从而拓展了用户与系统交互的可能性。 但这仅仅是开始,项目进一步加入了图片特效的元素。通过在识别到的手势上应用图像处理技术,用户可以享受到更加有趣和独特的视觉效果。这包括但不限于实时滤镜、图像变形和特殊效果的叠加。这种创新的设计不仅提升了用户体验,也为拓展项目的创意性和趣味性提供了更多可能性。
2024-03-21 19:15:11 142.51MB tensorflow opencv 计算机视觉 实时检测
1
计算机视觉实验:图像处理综合-路沿检测
2024-03-20 10:50:27 6KB 计算机视觉
1
图像分割实战-系列教程3:unet医学细胞分割实战
2024-03-13 17:44:54 409.6MB 图像分割 计算机视觉
1
利用ViT模型实现图像分类,本项目具有强大的泛化能力,可以实现任何图像分类任务,只需要修改数据集和类别数目参数。这里采用的是开源的“猫狗大战”数据集,实现猫狗分类。 本项目适用于Transformer初学者,通过该实践项目可以对于ViT模型的原理和结构有清晰地认识,并且可以学会在具体项目中如何运用ViT模型。本项目代码逻辑结构清晰,通俗易懂,适用于任何基础的学习者,是入门深度学习和了解Transformer注意力机制在计算机视觉中运用的绝佳项目。
1