基于全过程综合敌我识别中不同阶段综合敌我识别信息来源的差异, 采用动态贝叶斯网络进行建模. 在建
模过程中, 由于参数众多、样本难以全面获得、学习训练计算量巨大等问题, 将随机模糊思想引入参数学习, 从而既
可充分利用先验信息, 又尽可能地消除主观因素. 最后仿真了整个过程, 其结果验证了所提出方法的有效性.
针对融合识别领域中不同框架下多源异类传感器的不确定证据信息无法有效融合的问题, 提出一种基于条件证据网络的多源异类知识融合识别方法. 该方法将战场协同作战中不同框架下多源异类传感器的领域知识统一在证据网络的结构下, 形成多源异类知识融合识别模型, 对多源异类传感器的不确定性证据信息进行基于条件证据网络的融合推理, 得到识别结果. 仿真实例验证了所提出方法的优越性.