线性代数的许多应用都需要时间来发展。在一个小时内解释它们并不容易。教师和作者必须在使理论 完整与加入现代应用之间做选择。通常是理论获胜,然而本节是个例外。本节解释了上世纪最有价值的 数值算法。
我们想快速地乘上傅里叶矩阵 F 与它的逆 F−1。这通过快速傅里叶变换完成。一个普通乘积 Fc 用到 n2 次乘法(F 具有 n2 项)。FFT 仅需要 n 乘以 12 log2 n 次乘法。我们将看到这是如何实现的。 FFT 彻底改变了信号处理。整个行业都因该思想而迅速发展。电气工程师是第一个知道其中区别
的人——当他们遇见你时会取你的傅里叶变换(假设你是个函数)。傅里叶的思想是将 f 表示为谐波 ckeikx 的和。在频率空间中通过系数 ck 观察该函数,而非在实际空间中通过其值 f(x) 来观察它。c 与 f 间的前向、后向通道是由傅里叶变换实现。快速通道由 FFT 实现。中文翻译Introduction to Linear Algebra, 5th Edition 9.3节
单位根与傅里叶矩阵
二次方程有两个根(或者一个重根)。n 次方程具有 n 个根(算上重复次数)。这是代数基本定
2022-12-26 15:26:20
1.22MB
线性代数
数学
1