粒子群算法PSO优化LSSVM最小二乘支持向量机惩罚参数c和核函数参数g,用于回归预测,有例子,易上手,简单粗暴,直接替换数据即可。 仅适应于windows系统。 质量保证,完美运行。 本人在读博士研究生,已发表多篇sci,非网络上的学习代码,不存在可比性。
2024-02-27 16:15:26 599KB 支持向量机
1
粒子群算法(PSO)优化双向长短期记忆神经网络的数据回归预测,PSO-BiLSTM回归预测,多输入单输出模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-27 15:13:03 35KB 神经网络
1
粒子群算法(PSO)优化极限梯度提升树XGBoost时间序列预测,PSO-XGBoost时间序列预测模型,单列数据输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-31 18:40:27 54.69MB
1
粒子群算法(PSO)优化xgboost的分类预测,多输入单输出模型。PSO-xgboost分类预测模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-01-27 19:27:15 54MB
1
通过粒子群算法对卷积神经网络结构的参数进行优化,最后在训练集和测试集上进行验证,效果比普通卷积神经网络的精度更高。粒子群算法可以有效高效地为卷积神经网络的超参数搜索提供方案。相比手动设计,粒子群算法通过模拟进化算法的方式,有望找到更佳结构。 粒子群算法可以用于卷积神经网络(Convolutional Neural Network, CNN)的优化。CNN是一种常用于图像识别、语音识别等领域的深度学习模型,它由多个卷积层、池化层和全连接层组成。CNN模型的优化需要调整的超参数很多,包括卷积核大小、卷积核数量、池化大小、学习率等等。因此,使用传统的梯度下降算法可能会陷入局部最优解,而粒子群算法则可以通过全局搜索来寻找更优的解。
2024-01-23 09:07:11 88KB
1
1.版本:matlab2014/2019a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,更多内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信
2024-01-15 13:48:04 461KB matlab
基于粒子群算法的发电机组经济出力分配附matlab代码.zip
2024-01-15 13:45:38 4KB
基于粒子群算法优化RBF神经网络的异型连续箱梁桥损伤识别方法,谭国金,刘寒冰,针对异型连续箱梁桥的特点,提出了一种适用于该类桥梁结构的损伤识别方法。以位移振型比值和应变模态相对变化量来构造损伤指标,
2024-01-11 18:26:26 398KB 首发论文
1
1.程序说明: 这是一个完整的粒子群算法的MATLAB实现的代码, 待优化的目标函数为 min⁡ y=∑(xi-0.5)^2 粒子维数=10, 可以根据你的需要修改目标函数和各种算法参数 2.程序结果: 最优目标值 Vb_my = 3.56664309847387e-05 最优粒子 pbest_my = 1 至 6 列 0.499506940798657 0.50104765060025 0.500194615895899 0.499164428682584 0.497732394863659 0.496168951163397 7 至 10 列 0.500116035556065 0.50090429777352 0.498503424967773 0.496728949209852 >> 3.作者介绍: 某大厂资深算法工程师, 从事Matlab、Python算法仿真工作15年
2024-01-11 14:23:58 191KB matlab
1
粒子群优化极限学习机的参数。最佳粒子位置即为最优输入权值和隐层阈值。自己跑过的,放数据匹配一下就可以用
2024-01-05 14:52:37 6KB 粒子群算法优化
1