用卷滤波器matlab代码
2024-05-26 20:09:13 5.29MB 系统开源
1
本文来自于腾讯云,全文阐述了卷神经网络的基本结构和原理,希望对您的学习有帮助。先明确一点就是,DeepLearning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。第一点,在学习Deeplearning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。第二点,DeepLearning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等
2024-05-20 16:11:54 280KB
1
在Cora和Citeseer数据集上用图卷神经网络实现链路预测,包括GCN网络搭建、Cora和Citeseer数据集的数据预处理,以及链路预测网络的训练和测试代码。
2024-05-08 14:05:12 7KB Cora 链路预测 图卷积神经网络
1
针对全卷神经网络多次下采样操作导致的道路边缘细节信息损失和道路提取不准确的问题,本文提出了多尺度特征融合的膨胀卷残差网络高分一号影像道路提取方法。首先,通过目视解译的方法制作大量的道路提取标签数据;其次,在残差网络ResNet-101的各个残差块中引入膨胀卷和多尺度特征感知模块,扩大特征点的感受野,避免特征图分辨率减小和道路边缘细节特征的损失;然后,通过叠加融合和上采样操作将各个尺寸的道路特征图进行融合,得到原始分辨率大小的特征图;最后,将特征图输入Sigmoid分类器中进行分类。实验结果表明:本文方法的提取精度优于经典全卷神经网络模型,准确率达到了98%以上,有效保留了道路的完整性及其边缘的细节信息。
2024-05-04 08:34:44 6.54MB 道路提取 高分一号 残差网络
1
毕业设计代码,基于时空图卷(ST-GCN)的骨骼动作识别.zip
2024-05-02 14:53:37 52.56MB python
1
乳腺肿瘤计算机辅助诊断(CAD)系统在医学检测和诊断中的应用日益重要。为了区分核磁共振图像(MRI)中肿瘤与非肿瘤,利用深度学习和迁移学习方法,设计了一种新型乳腺肿瘤CAD系统:1)对数据集进行不平衡处理和数据增强;2)在MRI数据集上,利用卷神经网络(CNN)提取CNN特征,并利用相同的支持向量机分类器,计算每层CNN的特征图的分类F1分数,选取分类性能最高的一层作为微调节点,其后维度较低层为连接新网络节点;3)在选取的网络接入节点,连接新设计的两层全连接层组成新的网络,利用迁移学习,对新网络载入权重;4)采用固定微调节点前的网络层不可训练,其余层可训练的方式微调。分别基于深度卷网络(VGG16)、Inception V3、深度残差网络(ResNet50)构建的CAD系统,性能均高于主流的CAD系统,其中基于VGG16和ResNet50搭建的系统性能突出,且二次迁移可以提高VGG16系统性能。
1
手写方程式求解 使用卷神经网络求解手写方程 要求 OpenCV 凯拉斯 介绍 在这个项目中,我尝试使用opencv和pretrain resnet50模型评估手写表达式。 为了测试项目,我在油漆上创建了手写表达并将图像加载到Evaluate_Equation.ipynb中 代码说明 1. Extract_data.ipynb 从数据集中加载图像 图像->灰度->图像取反 查找轮廓 按boundingRect排序 查找具有最大面的矩形 裁剪图片 将图像调整大小并调整为一维数组 附加课程(从0到12的数字) 存储在列表中并转换为csv 2. Handwriting_train.ipynb 使用熊猫导入csv 分为图像和标签 将1D图像转换为3D图像 将图像重塑为(,28,28,3) 导入预训练的Resnet50模型并添加密集层 训练模型 保存模型 3. Evaluate_Equ
2024-04-16 16:27:02 29KB JupyterNotebook
1
Python是一种高级、通用、解释型的编程语言,由Guido van Rossum于1989年发起,1991年正式发布。Python以简洁而清晰的语法著称,强调代码的可读性和易于维护。以下是Python的一些主要特点和优势: 易学易用: Python的语法设计简单直观,更接近自然语言,使初学者更容易上手。这种易学易用的特性促使了Python在教育领域和初学者中的广泛应用。 高级语言: Python是一种高级编程语言,提供了自动内存管理(垃圾回收)等功能,减轻了程序员的负担,同时具有动态类型和面向对象的特性。 跨平台性: Python具有很好的跨平台性,可以在多个操作系统上运行,包括Windows、Linux、macOS等,使得开发的代码可以轻松迁移。 丰富的标准库: Python内置了大量的模块和库,涵盖了文件操作、网络编程、数据库访问等各个方面。这些标准库使得开发者能够快速构建功能丰富的应用程序。 开源: Python是开源的,任何人都可以免费使用并查看源代码。这种开放性促进了Python社区的发展,使得有大量的第三方库和框架可供使用。 强大的社区支持: Python拥有庞大而活跃的开发社区,这使得开发者可以轻松获取帮助、分享经验,并参与到Python的发展中。 适用于多个领域: Python在各种领域都有广泛的应用,包括Web开发、数据科学、人工智能、自动化测试、网络编程等。特别是在数据科学和人工智能领域,Python成为了主流的编程语言之一。 支持面向对象编程: Python支持面向对象编程,允许开发者使用类和对象的概念,提高了代码的重用性和可维护性。
2024-04-10 00:58:34 78.33MB python 毕业设计 课程设计
1
基于卷神经网络-长短期记忆网络(CNN-LSTM)分类预测,matlab代码,要求2019及以上版本。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-04-09 16:35:48 158KB 网络 网络 matlab lstm
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-09 10:48:36 2.24MB matlab
1