内容概要:本文探讨了15kW充电桩的PSIM仿真设计,主要涉及三相维也纳PFC和三电平LLC的组合系统。系统输入为三相380Vac,输出为800Vdc。文中详细分析了这两种技术的工作原理及其在PSIM仿真实验中的表现,展示了它们在提高功率因数、降低谐波失真以及提升能量转换效率方面的优势。仿真结果显示,三相维也纳PFC显著提高了功率因数,减少了谐波失真;而三电平LLC则在800Vdc的输出电压下保持了高效的能量转换和平稳的电压电流波形。此外,文章还提出了未来优化控制策略的方向。 适合人群:从事电力电子、电动汽车充电设备研发的技术人员,尤其是对PSIM仿真工具和高效直流电源解决方案感兴趣的工程师。 使用场景及目标:适用于需要深入了解充电桩内部工作原理和技术细节的研究人员和工程师。目标是帮助他们掌握三相维也纳PFC和三电平LLC的具体应用方法,以便应用于实际项目中。 其他说明:本文不仅提供了详细的理论分析,还包括了部分仿真代码,有助于读者更好地理解和复现实验结果。
2025-08-26 22:08:30 764KB 电力电子
1
内容概要:本文全面介绍了有刷直流电机的控制技术和应用。首先阐述了有刷直流电机的工作原理,包括电机本体、电刷和控制器的作用及其连接方式。接着详细讲解了三种主要的控制方法:调速控制(如PWM调速)、方向控制(如H桥电路)和保护控制(如电流和温度检测)。此外,还提供了控制电路设计、电机参数选择、控制算法(如PID控制和模糊控制)等方面的技术资料。最后,通过多个实际应用案例展示了有刷直流电机在不同领域的应用,强调了根据具体需求选择合适控制方法和技术的重要性。 适合人群:从事电机控制、工业自动化、机器人等领域工作的工程师和技术人员。 使用场景及目标:帮助读者深入了解有刷直流电机的控制原理和技术,提升在实际项目中的应用能力,确保电机的安全稳定运行。 其他说明:本文不仅涵盖了理论知识,还包括大量实用的技术细节和案例分析,有助于读者更好地理解和应用有刷直流电机控制技术。
2025-08-15 16:58:20 540KB
1
NPC三电平逆变器 SVPWM plecs c语言 电压电流双闭环控制 SVPWM使用c-script模块使用c语言编写 工况如下 直流电压Vdc 800V 负载侧电压幅值控制到311V具体波形如下图所示 电压电流均完美控制 三电平逆变器是一种电力电子设备,能够在将直流电能转换为交流电能的同时,保持较低的开关损耗以及较好的输出波形质量。特别是NPC(Neutral Point Clamped)三电平逆变器,它通过在逆变桥臂中点增加两个电容来实现电平的中性点钳位,有效避免了逆变器输出电压的过冲,从而提高了系统的稳定性和可靠性。 SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)是一种高效的空间矢量控制技术,常用于多电平逆变器的控制中。SVPWM技术可以提升逆变器的效率,减少开关损耗,并能够提供较为平滑的输出波形,是电力电子领域中的一个重要研究方向。 在实际应用中,三电平逆变器的控制需要精确的算法支持,C语言因其执行效率高、易于操作硬件等优点而常被用于实现这些控制算法。在本次研究的背景下,使用了Plecs软件,该软件是电力电子电路仿真领域的一个强大工具,支持基于模块的电路设计和仿真。利用Plecs中的C-script模块,工程师可以将用C语言编写的控制算法直接嵌入到仿真模型中,实现了对三电平逆变器的精确控制。 本研究中,对电压电流双闭环控制的实现,意味着系统不仅能够控制输出电压,还能精确控制输出电流。这种控制策略在保证输出电压稳定性的同时,也能确保负载侧的电流跟随其设定值,从而提高了系统的动态响应速度和负载适应能力。 在所给定的工况中,直流电压为800V,而负载侧电压幅值需控制到311V。在逆变器的设计和应用中,保持输出电压稳定是极其重要的。本研究通过精确控制和调制,确保了负载侧电压幅值能够稳定在311V,这对于高质量的电能输出尤为关键。 通过研究中的具体波形图,可以看出电压和电流都得到了很好的控制。这意味着逆变器的输出波形既平滑又稳定,这对于减少电网干扰、提高用电设备的使用寿命和运行效率具有重要意义。 在仿真和分析的过程中,相关的文件如“三电平逆变器技术分析与实践在科技.doc”、“三电平逆变器语言电压电流双闭环控制使用.html”、“深入探讨三电平逆变器技术及其在中的语言实现一引.txt”等,提供了丰富的技术分析和实践案例,帮助研究者深入理解三电平逆变器的控制原理和应用实践。 此外,图像文件“4.jpg”、“1.jpg”、“3.jpg”、“2.jpg”可能是逆变器控制过程中关键波形的截图,这些图像文件能够直观地展示电压和电流的控制效果,为分析和优化逆变器性能提供了可视化数据支持。 三电平逆变器在电力电子系统中扮演着核心的角色。通过采用SVPWM技术,利用C语言和Plecs仿真软件,以及通过实施电压电流双闭环控制策略,能够实现对逆变器输出波形的有效控制,从而满足工业和民用领域对高质量电能的需求。而相关的技术文档和图像资料则为研究者提供了深入探讨和分析三电平逆变器技术的宝贵资源。
2025-08-14 22:35:17 627KB
1
按下KEY1使能电机,并进入控制模式,按下KEY1\KEY2可以调整 占空比,以到达加减速的效果. 可以通过上位机----PID调试助手,查看现象或进行调试. 在PID调试助手中,打开开发板对应的串口,单击下方启动即可. 注意,部分例程中,上位机设置PID目标值时,未做幅值限制,若出现积分饱和为正常现象. 在电机未停止时重新开启电机,可能出现PID调整不准确的问题,电机会因为惯性保持运行,定时器会捕获不该捕获的脉冲. 部分电机特性不支持低速运行,速度调整过低时会判定为堵转,停止电机运转. 单片机引脚的连接对照相应的.h文件里的宏定义,也可以修改宏定义使之与您的硬件连接一致。
2025-08-11 15:48:28 20.08MB stm32 速度闭环 增量式PID 无刷电机
1
安森关公司的芯片MC33035专门应用于带霍尔位置信号的直流无刷电机驱动控制系统。它通过霍尔位置信号能够实现电子自动换向,同时可作为MPC5604P处理器和MOSFET驱动管的预驱动IC。MC33035既可以实现开环控制,也可以配合电流采集电路实现电流闭环控制,以及配合霍尔信号实现位置和速度闭环控制。本文介绍了MC33035在常用的三相直流无刷电机驱动控制系统中的典型应用,给出了驱动电路以及软件设计。 MC33035是安森美半导体推出的一款专为直流无刷电机驱动控制系统设计的集成电路,尤其适用于带有霍尔位置传感器的电机。这款芯片具备电子自动换向功能,能够根据霍尔传感器提供的位置信号精确控制电机的换相,确保电机的平稳运行。MC33035可以作为MPC5604P微处理器的预驱动IC,同时驱动MOSFET,实现了电机的高效控制。 MC33035提供了灵活的控制模式,不仅支持开环控制,还能通过集成的电流采集电路实现电流闭环控制,进一步提高系统的稳定性和效率。此外,结合霍尔信号,MC33035也能实现位置和速度闭环控制,确保电机在各种工况下的精确运行。在三相直流无刷电机驱动系统中,MC33035简化了电路设计,降低了主控制器MPC5604P的计算负担。 MPC5604P是一款基于PowerPC架构的32位微处理器,常用于工业控制和汽车电子等领域。在该系统中,MPC5604P通过比较器或光耦与MC33035交互,实现对电机驱动的精确控制。电流采集芯片AD8210用于提供电流反馈,其模拟信号直接输入MPC5604P的A/D转换器,以实时监测电机电流,并通过PI调节算法调整电机运行状态。 在软件设计方面,使用CodeWarrior for MPC55xx V2.3开发环境编写控制程序。控制引脚初始化包括ENABLE_MCU和DIR_MCU,它们分别用于控制电机的使能和方向。通过配置SIU.PCR寄存器将引脚设置为输出,并通过赋值操作控制引脚的高低电平。PWM初始化配置涉及对PSMI和PCR寄存器的设置,确保PWM信号能正确输出到指定引脚,实现电机速度的调节。 MC33035在直流无刷电机控制系统中的应用展示了其在电机驱动领域的高效性能和灵活性。通过与MPC5604P等微处理器的协同工作,MC33035能实现精确的电机控制,无论是开环还是闭环,都能保证电机在不同条件下的稳定运行,广泛应用于工业自动化、电动车、家用电器等众多领域。
2025-08-09 10:00:17 395KB 微处理器|微控制器
1
内容概要:本文详细介绍了基于Simulink仿真的二极管钳位型三电平储能变流器的研究与实现。系统采用1500V直流母线电压,连接到690V或10kV交流电网,功率配置为300kW逆变和200kW整流,实现了能量的双向流动。调制方式为SPWM和载波层叠,特别关注中点电位平衡,确保电压、电流THD低于4%,满足并网标准。双闭环控制策略包括外环的Q-U控制和内环的电流控制,确保系统的稳定运行和高效转换。仿真结果显示系统具有良好的动态性能和低谐波失真。 适合人群:从事电力电子技术、储能系统设计与仿真的研究人员和技术人员。 使用场景及目标:适用于需要深入了解三电平储能变流器的工作原理及其在Simulink仿真环境中的建模与控制策略的人群。目标是掌握三电平逆变器的控制方法,优化系统性能,提高能源利用效率。 其他说明:文中提到的仿真模型和控制策略可以作为进一步研究的基础,有助于推动三电平储能变流器在实际电力系统中的应用和发展。
2025-08-03 11:22:07 1.16MB 电力电子 储能系统
1
STM32微控制器与TB6612FNG电机驱动模块相结合,可以有效地实现对直流电机的驱动和控制。TB6612FNG是由东芝半导体公司生产的一款双通道电机驱动器,支持直流电机的前进、后退、制动和停止等操作。它具备低饱和电压和低静态电流的特点,适用于各种电池供电的移动设备。 TB6612FNG模块包含两个H桥,能够独立控制两个电机或一个步进电机。它还具有内置的过热保护电路和过电流保护电路,可以有效防止电机驱动过程中可能出现的损坏。每个H桥都由两个控制输入引脚、一个使能输入引脚、两个输出引脚和两个电机电流检测引脚组成。 STM32微控制器则是一款广泛应用于嵌入式系统中的32位ARM Cortex-M微控制器,它具有丰富的外设接口、高性能的处理能力以及灵活的电源管理选项。通过编程STM32微控制器,用户可以实现对TB6612FNG模块的精确控制,从而控制直流电机的转速和转向。 在设计直流电机驱动控制程序时,需要关注几个关键方面。要正确配置STM32的GPIO(通用输入输出)引脚,将它们设置为输出模式,以便发送控制信号至TB6612FNG的输入引脚。需要编写相应的PWM(脉冲宽度调制)信号生成代码,以便控制电机的速度。通过调整PWM信号的占空比,可以改变电机的转速。然后,需要实现对电机转向的控制逻辑,这通常涉及到对TB6612FNG的两个输入引脚进行高低电平的组合配置。 除了基本的运动控制,良好的电机驱动程序还应包括对电机状态的监测和反馈机制。例如,通过读取TB6612FNG的电流检测引脚,可以估计电机的负载情况,并据此调整PWM信号来优化电机的运行。此外,还可以通过STM32的定时器和中断服务程序来实现更复杂的控制策略,例如实现定时自动启动和停止电机,或者在检测到过载时立即断开电机的电源。 在设计电路和编写控制程序时,还需要考虑到电机驱动板与电机之间的电气连接和电流承受能力。电机驱动板应该选择合适的电源电压和电流规格,以确保系统稳定运行的同时,不会对STM32微控制器造成损害。同时,为了保护微控制器和电机驱动器,在设计电路时还应该加入必要的保护元件,比如二极管用于抑制电机换向时产生的反向电压。 STM32微控制器和TB6612FNG电机驱动模块的结合使用,为直流电机的驱动和控制提供了强大的硬件支持和灵活性。编写一个高效的电机驱动控制程序,不仅需要对硬件特性的深入了解,还需要在软件编程上具备一定的技巧和经验。在实际应用中,一个好的控制程序应当能够确保电机的稳定运行,同时提供足够的灵活性以适应不同的操作需求和环境条件。
2025-08-01 14:00:25 4.63MB tb6612 stm32
1
内容概要:本文详细介绍了基于Simulink仿真的直流有刷电机双闭环控制方案,涵盖电机模型选择、控制器设计、PWM波控制以及仿真结果分析。文中首先构建了Simulink中的电机模型,接着设计了由转速闭环和电流闭环组成的双闭环控制系统,分别采用了PI控制器进行控制。通过仿真展示了该系统在阶跃转速指令、负载变化等情况下的优异性能,如快速响应、低超调量和平稳的电流与扭矩输出。此外,还探讨了PWM波形的生成方法及其在不同工况下的表现,并分享了一些调参经验和常见问题解决办法。 适合人群:从事电机控制研究的技术人员、高校相关专业师生、自动化领域的工程师。 使用场景及目标:适用于需要深入了解直流有刷电机双闭环控制原理和技术实现的研究者;帮助使用者掌握Simulink建模技巧,提高实际项目中的电机控制水平。 其他说明:文章不仅提供了详细的理论解释,还包括具体的MATLAB代码片段,便于读者理解和复现实验结果。同时强调了实际应用中可能遇到的问题及解决方案,如参数调整、硬件兼容性等。
2025-07-31 12:54:23 181KB
1
内容概要:本文详细介绍了基于双闭环控制的直流有刷电机转速控制方案及其在Simulink环境下的仿真实现。首先,文章阐述了电机模型的选择和参数配置,接着描述了转速闭环和电流闭环的具体设计方法,包括PI控制器的参数选择和PWM波的生成机制。仿真结果显示,在阶跃转速指令和负载变化的情况下,电机表现出良好的动态响应和平稳的电流调节。此外,文章还展示了MATLAB代码实现和仿真结果的详细分析。 适合人群:从事电机控制研究的技术人员、自动化工程领域的研究人员以及相关专业的高校师生。 使用场景及目标:适用于需要深入了解直流有刷电机双闭环控制原理和技术实现的研究项目,旨在提高电机控制系统的性能和稳定性。 其他说明:文中提供的代码片段和仿真结果有助于读者更好地理解和复现实验过程,同时强调了参数调整和模型优化的重要性。
2025-07-31 12:21:52 924KB
1
内容概要:本文详细介绍了无刷直流电机(BLDC)在Simulink环境下的仿真研究,重点探讨了双闭环PID控制算法的应用。系统主要由DC直流源、三相逆变桥、无刷直流电机、PWM发生器、霍尔位置解码模块、驱动信号模块和PID控制模块组成。文中分别阐述了转速环和电流环的PID控制原理及其在电机性能提升中的重要作用。通过仿真实验,展示了双闭环PID控制下电机响应速度快、稳定性好的特点,并提供了PID控制的伪代码示例。 适合人群:从事电机控制系统设计、自动化工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要理解和掌握无刷直流电机控制原理及Simulink仿真工具的人群,旨在帮助他们优化电机控制策略,提高电机性能。 阅读建议:读者可以结合Simulink软件进行实际操作,通过调整PID参数观察电机性能的变化,从而加深对双闭环PID控制的理解。
2025-07-31 11:34:59 418KB
1