内容概要:本文详细介绍了预设性能控制(PPC)的理论基础及其在MATLAB环境下的具体实现。首先,文章解释了性能函数的设计,通过指数衰减函数划定误差的活动范围,并引入误差变换使原始误差压缩到指定区间。接着,文章探讨了障碍李雅普诺夫函数的应用,利用对数项作为屏障防止误差越界。随后,文章阐述了有限时间模控制的增强机制,通过设计模面和控制律,实现了系统的快速收敛。最后,文章提供了完整的仿真框架,展示了如何应用这些技术于二阶系统,特别是电机和机械臂等应用场景。 适用人群:自动化控制领域的研究人员和技术人员,尤其是那些熟悉MATLAB并希望深入了解预设性能控制的人士。 使用场景及目标:适用于需要精确控制误差边界的应用场合,如工业自动化、机器人控制等领域。主要目标是提高系统的响应速度和稳定性,同时确保误差始终保持在预设范围内。 其他说明:文中提供的MATLAB代码可以直接用于实验验证,但需要注意参数的选择和调整,以避免可能出现的问题,如控制量饱和或抖振。此外,实际应用中还需考虑外部扰动的影响,建议增加干扰观测器以提升系统的鲁棒性。
2025-10-10 14:42:23 293KB
1
为您提供SliderCaptcha下载,SliderCaptcha是一个块验证码,用户通过拖动块完成校验,支持PC端及移动端,新增 Blazor 版本的块验证码。
2025-10-03 23:15:02 695KB 滑块验证码 滑动验证码
1
易语言是一种专为中国人设计的编程语言,它以简体中文作为编程语法,降低了编程的门槛,使得更多非计算机专业的人也能轻松学习编程。在这个"易语言窗口入效果源码"项目中,我们将深入探讨如何在易语言中实现窗口的入动画效果。 窗口入效果通常用于软件界面的动态展示,它可以使程序启动或切换窗口时更具视觉吸引力。在易语言中,这种效果可以通过控制窗口的位置和透明度来实现。以下是一些关键知识点: 1. **窗口对象与属性**:在易语言中,窗口是程序的基本组成部分,通过创建窗口对象并设置其属性(如位置、大小、背景色等)来定义窗口的外观。窗口入效果涉及的主要属性包括窗口的左上角坐标(X, Y)和透明度。 2. **事件处理**:易语言中的事件驱动编程模式是实现入效果的关键。例如,我们可以监听窗口的“初始化”事件,在该事件中编写入动画的代码。 3. **动画原理**:入效果的本质是改变窗口的坐标和透明度,通过一定时间间隔的连续更新来实现平的运动。这需要用到定时器组件,每隔一定时间(如每毫秒或每帧)更新窗口的状态。 4. **透明度控制**:易语言提供了调整窗口透明度的功能,通过修改窗口对象的透明度属性,可以实现从完全透明到完全不透明的过渡,从而产生窗口逐渐出现的效果。 5. **数学运算**:计算窗口入的轨迹通常涉及到简单的线性插值(Lerp)或基于时间的缓动函数,这些都需要基本的数学知识。例如,可以用线性插值公式计算窗口在每一帧应该达到的位置和透明度。 6. **编程技巧**:为了使动画看起来更加流畅,需要合理设定动画的帧率和持续时间。此外,还可以利用条件判断和循环结构来确保动画的完整执行,防止窗口在动画过程中被用户意外关闭。 7. **调试与优化**:在实现入效果后,可能需要进行反复调试和优化,确保动画在各种系统环境下都能正常运行,并且尽可能减少对系统资源的占用。 通过学习和理解以上知识点,开发者可以利用易语言创造出具有专业水准的窗口入动画,提升软件的用户体验。这个源码项目提供了一个很好的实践平台,可以帮助初学者更好地理解和掌握易语言的图形界面编程技巧。在实践中,可以尝试修改源码,探索不同的动画效果,进一步提高编程技能。
2025-09-25 21:44:05 248KB 图形图像源码
1
基于自抗扰控制的PMSM非奇异终端模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,自抗扰控制下的PMSM非奇异终端模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,基于自抗扰控制的非奇异终端模控制_pmsm 包含:详细公式推导以及终端模控制设计方法以及稳定性推导、1.5延时补偿。 ,基于自抗扰控制的非奇异终端模控制_pmsm; 详细公式推导; 终端模控制设计方法; 稳定性推导; 1.5延时补偿。,自抗扰控制下的PMSM非奇异终端模控制设计方法研究 在现代电力电子和自动控制领域,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的控制性能而被广泛应用。在实际应用中,电机控制的稳定性与快速响应能力是影响系统性能的关键因素。自抗扰控制(ADRC)和非奇异终端模控制(NTSMC)作为两种先进的控制策略,在提高系统鲁棒性、减少对系统模型精确性的依赖方面展现了巨大潜力。本文旨在探讨基于自抗扰控制的PMSM非奇异终端模控制策略的详细公式推导、稳定性分析,以及1.5延时补偿设计方法。 自抗扰控制技术是一种能够有效应对系统外部扰动和内部参数变化的控制方法。它通过实时估计和补偿系统内外扰动来实现对系统动态行为的有效控制。在电机控制系统中,ADRC可以显著增强系统对负载变化、参数波动等不确定因素的适应能力,从而提高控制精度和鲁棒性。 非奇异终端模控制是一种新型的模控制技术,其核心在于设计一种非奇异模面,避免传统模控制中可能出现的“奇异点”,同时结合终端吸引项,使得系统状态在有限时间内收敛至平衡点。NTSMC具有快速、准确以及无需切换控制输入的优点,非常适合用于高性能电机控制系统。 在研究中,首先需要详细推导基于自抗扰控制的PMSM非奇异终端模控制的相关公式。这包括建立PMSM的数学模型,设计自抗扰控制器以补偿系统内外扰动,以及构造非奇异终端模控制律。在推导过程中,需要充分考虑电机的电磁特性、转动惯量以及阻尼效应等因素。 接下来,稳定性分析是控制策略设计的关键环节。通过李雅普诺夫稳定性理论,可以对控制系统的稳定性进行深入分析。通过选择合适的李雅普诺夫函数,证明在给定的控制律作用下,系统的状态能够收敛至平衡点,从而确保电机控制系统的稳定性。 1.5延时补偿设计方法是提高系统控制性能的重要环节。在电机控制系统中,由于信息处理、执行器动作等方面的延迟,系统中必然存在一定的时延。为了保证控制性能,需要在控制策略中引入延时补偿机制。通过精确估计系统延迟,并将其纳入控制律中,可以有效减少时延对系统性能的影响。 本文档中包含了多个以“基于自抗扰控制的非奇异终端模控制”为主题的文件,文件名称后缀表明了文件可能是Word文档、HTML网页或其他格式。从文件列表中可以看出,内容涵盖了详细公式推导、模控制设计方法、稳定性分析以及延时补偿设计方法等多个方面。此外,文档中还包含“应用一”、“应用二”等内容,表明了该控制策略在不同应用场合下的具体运用和实验研究。 基于自抗扰控制的PMSM非奇异终端模控制策略通过结合ADRC和NTSMC的优势,能够有效提升电机控制系统的稳定性和响应速度,减少对系统精确模型的依赖,并通过延时补偿设计提高控制性能。这项研究为高性能电机控制系统的开发提供了新的思路和方法。
2025-09-19 14:14:25 659KB edge
1
STM32G431高性能无感FOC驱动系统资料:方波高频注入加膜观测器,零速带载启动至中高速平过渡,全C语言代码带中文注释,方便移植与开发,STM32G431 HFI SMO FOC无感驱动资料:方波高频注入与膜观测器技术实现,stm32g431 HFI SMO FOC方波高频注入加膜观测器无感FOC驱动资料,零速带载启动,低速持续注入,实现无感驱动低速运行,堵转有力,中高速转入膜观测器,平过渡。 包括完整的cubemx配置文件,mdk工程,原理图和开发笔记,代码全C语言,宏定义选项均有中文注释,方便移植到自己的项目中。 ,关键词:STM32G431; HFI; SMO; FOC方波; 高频注入; 膜观测器; 无感FOC驱动; 零速带载启动; 低速持续注入; 中高速膜观测器; Cubemx配置文件; MDK工程; 原理图; 开发笔记; C语言代码; 宏定义选项注释。,STM32G431无感FOC驱动资料:方波高频注入+膜观测器,平过渡低速运行
2025-09-15 00:06:03 2.52MB 正则表达式
1
四轮轮毂电机驱动车辆横摆力矩与转矩矢量分配控制仿真研究:模与PID联合控制策略及力矩分配方法探究。,四轮轮毂电机驱动车辆DYC与TVC系统分层控制策略仿真研究:附加横摆力矩与转矩矢量分配控制方法探索。,四轮轮毂电机驱动车辆直接横摆力矩控制(DYC),转矩矢量分配(TVC)的仿真搭建和控制 整体采用分层控制策略。 其中顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角的误差计算出维持车辆稳定性的期望附加横摆力矩。 为了减少车辆速度影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩以及驱动力进行分配,实现整车在高速地附着路面条件下的稳定性控制。 顶层控制器的控制方法包括:模控制(SMC)、LQR控制、PID控制、鲁棒控制(发其中一个,默认发模和pid控制器)等。 底层控制器的分配方法包括:平均分配、最优分配,可定制基于特殊目标函数优化的分配方法(默认发平均分配)。 说明:驾驶员模型采用CarSim自带的预瞄模型(Simulink驾驶员模型请单独拿后);速度跟踪可加可不加,采用的是PID速度跟踪控制器。
2025-09-11 14:14:17 1.52MB 开发语言
1
stm32f405 HFI无感膜foc 程序
2025-09-08 16:35:08 39.67MB stm32
1
该工具用于要求,两张图片,一张块模板、一张原图片。根据块模板在原图片随机位置抠出块,并将原图片被抠部分进行虚化操作,得到抠图坐标,块图片和虚化后的主图
2025-09-03 15:23:18 12KB 滑块验证码
1
基于高阶模观测器(HSMO)的永磁同步电机(PMSM)无位置传感器速度控制仿真方法。首先简述了PMSM的特点及其对位置传感器的需求,接着引出了高阶模观测器作为解决方案。文中通过具体案例和仿真实验,展示了HSMO在PMSM控制系统中的应用效果,特别是在应对外部干扰时的表现。实验结果显示,该方法能够在不同速度下提供稳定的转子位置和速度估计,实现了精确的速度控制。最后讨论了该方法的优势与面临的挑战,如参数优化和与其他控制策略的结合。 适合人群:从事电机控制、自动化工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于希望深入了解PMSM无位置传感器控制技术和高阶模观测器应用的研究人员,以及希望通过仿真验证新技术可行性的工程师。 其他说明:文中还附带了一段MATLAB代码示例,帮助读者更好地理解和实现HSMO在PMSM控制中的应用。
2025-09-02 09:39:10 1.13MB
1
无线电能传输(WPT)的LCL-S拓扑及其在MATLAB/Simulink环境下的仿真模型。LCL-S拓扑由两电平H桥逆变器、LCL-S串联谐振和不可控整流结构组成,适用于高频能量传输并具有良好阻抗匹配特性。文中重点探讨了三种控制方法——模控制、移相控制和PI控制,并对其仿真效果进行了对比分析。模控制通过实时调整逆变器输出电压确保系统最优工作点;移相控制则通过调整相位差优化能量传输;PI控制利用比例和积分环节保持系统稳定。最终,通过对比实验验证了各控制方法在不同工况下的性能差异。 适合人群:从事无线电能传输研究的技术人员、高校师生以及对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:①理解和掌握LCL-S拓扑的工作原理及其在无线电能传输中的优势;②评估模控制、移相控制和PI控制在LCL-S拓扑中的应用效果,为实际项目选型提供依据。 其他说明:附带的文章有助于加深对仿真实验的理解,建议结合理论与实操进行学习。
2025-08-25 17:39:46 492KB
1