深度预测 使用深度残差网络进行深度预测。 @ iro-cp的原始代码和论文在这里找到: : @iapatil的此版本也为我提供了帮助,可在此处找到: : 写在PyTorch中。 要运行,请从下载预训练的numpy权重并将其保存在当前目录中。 然后,激活PyTorch环境并运行 python predict.py 输出将另存为output_image.png 。 我的文章详细介绍和实现可以在找到。
2021-11-08 23:01:05 10KB Python
1
为实现对乳腺癌组织病理图像的准确自动分级,提出了一种改进的卷积神经网络,依次引入两种不同的卷积结构,以提高网络对病理图像的识别准确率。以深度残差网络(ResNeXt)为基础网络,用八度卷积(OctConv)替代传统卷积层,在特征提取阶段降低特征图中的冗余特征,提高了细节特征的提取效果;用异构卷积(HetConv)代替网络中的部分传统卷积层,以降低模型的训练参数。为了克服因数据样本较少出现的过拟合问题,采用一种基于图像分块思想的数据增强方法。实验结果表明,该网络在图像级别的四分类任务中准确率达到91.25%,表明所设计的网络模型具有较高的识别率和较好的实时性。
2021-11-04 11:07:30 7.64MB 图像处理 组织病理 卷积神经 残差网络
1
针对不可抗力因素造成无人机航拍绝缘子图片模糊、绝缘子目标检测率较低的问题,提出了一种基于Wasserstein距离优化的生成式对抗网络(WGAN)图片去模糊的绝缘子目标检测方法。首先在WGAN训练过程中引入残差网络,使得生成的绝缘子图片更加清晰;其次在损失函数中引入Wasserstein距离以保证训练过程的稳定性;最后通过优化模型的训练过程,使得生成的绝缘子图片细节还原度更高。绝缘子图片去模糊化实验结果表明,所提方法在结构相似性与峰值信噪比等评价指标上均高于基于卷积神经网络与深度多尺度卷积神经网络等图像去模糊算法。另外,将利用所提方法生成的绝缘子图片与模糊绝缘子图片划分为3组,采用改进的基于区域建议的卷积神经网络目标检测算法分别进行目标检测实验,精确度均值分别提高了5.77%、6.73 %与5.98 %,有效提高了绝缘子的目标检测率。
1
带你了解残差块和注意力机制的联合应用在医学细胞图像上,对他进行分割,给出简单明了的展示,让你一步步进入医学人工智能的殿堂
2021-10-30 09:05:29 1.18MB 注意力机制 医学 残差网络
1
FCRN:全卷积残差网络深度估计 Laro,Iro等人的Pytorch实现。 “具有完全卷积残差网络的更深深度预测。” 3D Vision(3DV),2016年第四届国际会议。 IEEE,2016年。 原始实现在TensorFlow( )中。 要运行,请执行以下步骤: 下载NYU深度数据集V2标记的数据集: : 。 从Laina等人的模型的一部分下载经过预训练的TensorFlow权重作为.npy文件。 来自 。 将以上两个文件与代码放在同一目录中。 运行train.py进行训练,运行test.py评估结果。 一些结果(rgb图像,地面真实情况,预测深度):
2021-10-27 19:28:04 456KB Python
1
ResNet网络结构模块,可直接使用,返回值一个是loss用于损失值优化,第二个softmax输出的是预测值用于测试
2021-10-13 14:37:51 6KB ResNet python 残差网络 深度学习
1
如果对代码有疑问可以看一下我的博客《Pytorch 实现自己的残差网络图片分类器》和压缩包中的README.docx。也欢迎大家在博客下面提问或者指出文中的错误,谢谢大家。
2021-10-13 13:04:28 268KB python
1
Code for the Pose Residual Network introduced in 'MultiPoseNet: Fast Multi-Person Pose Estimation using Pose Residual Network (ECCV 2018)' paper
2021-10-11 16:17:47 10KB Python开发-机器学习
1
1.由来: 由google2015年提出,深度神经网络训练的技巧,主要是让数据的分布变得一致,从而使得训练深层神经网络更加容易和稳定。 2.作用 BN的作用就是将这些输入值或卷积网络的张量进行类似标准化的操作,将其放缩到合适的范围,从而加快训练速度;另一方面使得每一层可以尽量面对同一特征分布的输入值,减少了变化带来的不确定性 3.操作阶段 4.操作流程 计算每一层深度的均值和方差 对每一层设置2个参数,γ和β。假设第1深度γ=2、β=3;第2深度γ=5、β=8。 使用缩放因子γ和移位因子β来执行此操作。 随着训练的进行,这些γ和β也通过反向传播学习以提高准确性。这就要求为每一层学习2个
2021-10-10 20:22:59 252KB 归一化 批量归一化 残差
1
密集连接的注意力金字塔残差网络用于人体姿势估计。
2021-09-25 15:30:51 1.75MB 研究论文
1