由于不确定因素多、电网规模大,原始蒙特卡洛模拟(MCS)在复杂电力系统可靠性评估中无法满足实时高效的要求。提出一种基于交叉熵(CE)的重要抽样与极限学习机(ELM)相结合的可靠性评估算法,一方面通过在系统抽样环节引入CE构建元件的最优概率分布,减小方差变化,加快指标收敛速度;另一方面,采用ELM对重要抽样的状态样本进行有监督学习,以所构建的网络学习模型替代传统非线性规划方法进行状态评估,提高单次系统状态评估的效率,从而实现快速可靠性评估。对IEEE RTS-79系统进行可靠性评估,与原始MCS和CE重要抽样的对比结果表明,在一定的误差范围内所提算法合理、有效,其计算效率较原始MCS和CE显著提高。
1