用Java完成多元线性回归相关算法编程。资源是从百度文库上下载的https://wenku.baidu.com/view/070d30eb988fcc22bcd126fff705cc1755275f61.html。
2023-02-24 11:49:42 146KB java 多元线性回归
1
原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察。 import numpy import pandas as pd import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv('Folds5x2_pp.csv') data.head() 会看到数据如下所示: 这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。我们不用纠结于每项具体的意思。 我们的问题是得到一个线性的关系,对应PE是样本输出,而AT/V/
2023-02-17 12:29:32 147KB data mp python
1
波士顿房价数据,练手变量选择
2023-01-01 14:11:35 41KB 波士顿数据集
1
【老生谈算法】matlab多种回归分析算法.doc
2022-12-27 22:47:10 118KB matlab 回归分析
1
用于线性回归分析的数据表波士顿房价housing.csv
1
用于logisti回归分析的数据材料,可以参见我的文章进行练习logisti回归分析的方法,正在大学课上练习。
2022-12-17 21:37:24 16KB r语言
1
应用回归分析的课件,可供学习参考
2022-12-12 14:26:11 78.27MB 课件
1
主要介绍了Python 线性回归分析以及评价指标详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-12-11 21:32:00 86KB Python 线性回归 评价指标
1
自变量为年份,同时选中Time选项
2022-12-07 19:42:37 1.37MB 线性回归
1
为探究氧化物组成对煤灰熔融特性的影响,选取煤灰中的氧化物含量作为自变量,在SPSS软件平台上对变形温度DT、软化温度ST、半球温度HT和流动温度FT分别进行全子集回归和逐步回归,比较得到显著性最强的新定义的熔融指数FI和最优的回归预测方程。结果表明,单一氧化物组分对灰熔温度的影响不显著;对DT影响最显著的熔融指数为FID=Al2O3+Fe2O3,且煤灰中FID含量低于30%时,DT几乎不变化,含量大于30%时DT发生较大幅度降低;对FT影响最显著的熔融指数为FIF=SiO2+Al2O3+Fe2O3,且随着FIF含量升高,流动温度呈上升趋势;对半球温度HT影响最显著的熔融指数FIH= SiO2+Al2O3,对软化温度ST影响最显著的熔融指数FIS=SiO2+Al2O3+Fe2O3,但FIH和FIS对ST和HT的显著性略低,为得到更准确的预测模型,进一步以十种氧化物为起点通过逐步回归方法分析得到ST和HT的预测方程。
2022-12-05 17:33:55 1.46MB 煤灰熔融性 回归分析 SPSS 灰熔温度
1