微软提供的贝叶斯网络建模、分析工具,操作简单、界面友好,并提供C#API接口及使用示例,可运行于X64系统。
2022-08-04 21:20:35 11.22MB 贝叶斯 bayes 机器学习
1
构造精确的贝叶斯网络分类器已被证明为NP难问题,提出了一种基于捕食逃逸粒子群优化(PSO)算法的通用贝叶斯网络分类器,能有效避免数据预处理时的属性约简对分类效果的直接影响,实现对贝叶斯网络结构的精确学习和搜索。另外,将所提出的分类器应用于高职院校就业预测分析,并在Weka平台上实现对该分类器的构建和验证,与其他几种贝叶斯网络分类器的对比实验结果表明,该分类器具有更好的性能。
2022-07-29 20:11:48 395KB 工程技术 论文
1
小时间序列在宏观经济领域普遍存在, 对小时间序列的分类预测也有着广泛的需求.由于小时间序列 蕴含的信息不充分, 有效地提高小时间序列分类预测的可靠性非常困难, 目前也缺少这方面的研究.针对这种情况, 在基于引入平滑 参数的高斯核函数估计属性边缘密度的基础上, 建立用于小时间序列分类预测的动态朴素贝叶斯分类器, 并给出平滑参数的同步和异步优化方法.实验 结果表明, 优化能够显著提高小时间序列分类预测的准确性.
1
支持向量机(support vector machines,SVM)是一种二分类模型,它将实例的特征向量映射为空间中的一些点,SVM 的目的就是想要画出一条线,以 “最好地” 区分这两类点,以至如果以后有了新的点,这条线也能做出很好的分类。SVM 适合中小型数据样本、非线性、高维的分类问题。 SVM 最早是由 Vladimir N. Vapnik 和 Alexey Ya. Chervonenkis 在1963年提出,目前的版本(soft margin)是由 Corinna Cortes 和 Vapnik 在1993年提出,并在1995年发表。深度学习(2012)出现之前,SVM 被认为机器学习中近十几年来最成功,表现最好的算法。
2022-07-06 21:05:47 923KB 代码
1
贝叶斯网络的循环信念传播算法的实现 贝叶斯网络和循环信念传播 贝叶斯网络可用于编码事件之间的一组因果或逻辑概率依赖关系。它们采用有向无环图的形式,每个节点都与一个概率表相关联,该概率表定义了它根据其父节点的值获取每个可能值的概率。 Loopy Belief Propagation 是一种算法,它计算网络每个节点的边际概率分布的近似值,以预先设置的一组选定“观察”变量的值为条件。 这是一个近似值,它表现得好像每个节点的父节点在给定节点的情况下是条件独立的。仅当所考虑的图实际上是一棵树(没有无向循环)时,这才是正确的,在这种情况下,近似值是精确的。 该算法的一个典型失败案例是,当某些节点的父节点既高度相关又非常随机(尤其是simple_net此存储库中的示例的情况;))。然后,即使算法收敛(并非总是如此),它也很可能收敛到错误的值。 另一方面,对于观察结果几乎可以肯定确定网络其余部分的值的网络(这在现实世界的问题中并不少见),循环信念传播算法提供了一个非常好的近似值
2022-06-12 14:05:26 14KB 算法 rust
这个包是Julia中概率图形模型算法的轻量级实现 特征 目前,它处理离散因子图的操作(使用 API 构建或通过从 UAI Competition 格式的文件加载),以及通过信念传播(边际、最大边际和混合边际推理)进行近似推理。 因子图是由变量节点和因子节点组成的二分图。变量节点与随机变量相关联,因子节点与域是相邻(变量)节点的直接乘积的函数相关联。在最简单的离散情况下,因子节点与表示函数的多维数组(因子)相关联。
2022-06-10 09:07:00 265KB julia 算法
数据挖掘 贝叶斯算法 C++ 贝叶斯算法一般都用MATLAB实现,好不容易找到个C++的,可以用到工程中去

通过分析设备故障诊断与维修所面临的主要问题以及当前常用诊断策略存在的局限性, 研究
基于贝叶斯网络的故障诊断策略优化方法。提出了适合于表达诊断问题的基于故障假设2观测2维修操
作节点的贝叶斯网络结构, 阐述了基于贝叶斯网络的故障诊断策略优化方法的基本思想和优化算法。 该
方法综合考虑了多故障、 有观测操作以及操作之间有依赖关系等情况。最后通过应用实例, 证实了该方
法在信息不确定条件下进行诊断与维修决策的有效性。

1
SVM的几个核函数对说话人身份识别的技术研究 根据具体的数据得到特征 然后采取svm分类,svm包含高斯核函数 线性核函数 RBF核函数 多项式核函数等 采取了不同的核函数对说话人的身份进行识别
2022-06-01 18:10:22 2.52MB matlab
为解决隧道风险评估中存在的主观性大、结果不准确的问题,提出基于事故树和贝叶斯网络的区间概率等级、权重信心指标与置信区间相结合的综合风险概率估计法,并将其应用于渔寮隧道的坍塌风险评估中。首先利用事故树构建贝叶斯网络,并利用案例中因素之间的依赖关系得出节点的条件概率(联合概率)。然后利用提出的区间概率等级划分与权重信心指标法进行调查,得出专家j对于基本事件xi出现概率的估计值Pij,由所有专家的估计值构建样本空间Ui及其统计量,通过引入置信区间的方法得出基本事件xi出现的概率范围。获得所有事件的概率范围后与贝叶斯网络的条件概率相结合进行风险推断,保证了风险评估的科学性和准确性,同时可利用该模型进行事故原因诊断。
2022-06-01 03:39:27 1.31MB 事故树 贝叶斯网络 隧道塌陷 模糊数学
1