龙卷风优化算法(Tornado optimizer with Coriolis force,TOC)是一种受自然界龙卷风形成过程启发的智能优化算法,发表于中科院二区期刊《ARTIFICIAL INTELLIGENCE REVIEW》。该算法通过模拟龙卷风的动态过程,包括风暴初生、科里奥利效应、气旋平衡方程以及消散与重生机制,解决了传统优化算法面临的梯度陷阱、早熟收敛和维度灾难等问题。TOC算法无需复杂数学模型,不依赖初始参数,能够在高维解空间中高效寻找全局最优解。论文还提供了算法的伪代码和效果图,展示了其在回归预测、分解模型和去噪算法等领域的应用潜力。 龙卷风优化算法(TOC)是一种新兴的智能优化方法,其灵感来源于自然界中龙卷风的形成过程。该算法的核心在于模拟龙卷风的动态特性,包括风暴的产生、科里奥利力的影响、气旋平衡的数学表达以及龙卷风的消散与新生现象。通过这些模拟,TOC算法能够有效地规避传统优化算法中常遇到的问题,如梯度信息失效导致的局部最优问题、算法过早收敛于非全局最优解以及处理高维数据时的维度灾难。 TOC算法的突出优势在于其对初始参数的不依赖性,这使得它在高维解空间中依然能够高效地进行全局搜索。算法的这一特点使其非常适合于那些参数空间庞大、复杂度高的优化问题。而为了进一步加强算法的可应用性,论文作者提供了算法的伪代码描述,这有助于理解算法的具体实现步骤,并且易于在不同的应用场景中进行调整和优化。 为了证明TOC算法的实际效用和广泛适用性,论文还展示了算法在多个案例中的应用效果图。这些案例包括回归预测、分解模型和去噪算法等,体现了TOC算法在数据处理和分析中的潜力。在回归预测中,TOC算法可以帮助模型更好地捕捉数据之间的关联性,提高预测的准确性;在分解模型中,TOC算法能够有效地将复杂问题简化为多个子问题,进而提高问题解决的效率;而在去噪算法中,TOC算法通过优化处理流程,可以提升去噪效果,增强数据的清晰度和可用性。 TOC算法作为一种智能优化技术,不仅在理论上具有创新性,在实际应用中也表现出了强大的性能。其对于初生、演变、平衡和重生这一系列龙卷风现象的模拟,为解决优化问题提供了一条新的解决路径。其简易的操作方式和对高维数据的高效处理能力,预示着TOC算法将在众多领域发挥重要的作用。
2026-01-12 17:54:02 2.68MB 软件开发 源码
1
内容概要:本文详细介绍了几种常见的汽车主动悬架控制策略及其在Simulink中的实现方法。首先讲解了天棚控制(Skyhook)和地棚控制(Groundhook)的基本原理和实现方式,这两种方法分别侧重于车身稳定性和车轮贴地性能。接着探讨了混合控制策略,即通过加权组合天棚和地棚控制来提高综合性能。此外,文章还介绍了模糊PID控制和LQG控制两种智能化控制方法,前者通过模糊逻辑调整PID参数,后者则利用状态空间模型和卡尔曼滤波器进行最优控制。每种控制策略都在不同工况下进行了实测对比,展示了各自的优缺点。 适合人群:从事汽车工程领域的研究人员和技术人员,特别是对主动悬架控制系统感兴趣的工程师。 使用场景及目标:适用于希望深入了解和应用Simulink进行主动悬架控制策略建模的研究人员和技术人员。主要目标是在理论和实践中掌握不同控制策略的特点,以便在实际项目中做出合适的选择。 其他说明:文中提供了详细的Matlab/Simulink代码片段和模型构建步骤,帮助读者更好地理解和复现实验结果。同时提醒读者注意实际应用中的常见问题,如作动器延迟和硬件在环测试等。
2026-01-12 14:46:47 284KB
1
内容概要:本文介绍了基于PSA-TCN-LSTM-Attention的时间序列预测项目,旨在通过融合PID搜索算法、时间卷积网络(TCN)、长短期记忆网络(LSTM)和注意力机制(Attention)来优化多变量时间序列预测。项目通过提高预测精度、实现多变量预测、结合现代深度学习技术、降低训练时间、提升自适应能力、增强泛化能力,开拓新方向为目标,解决了多维数据处理、长时依赖、过拟合等问题。模型架构包括PID参数优化、TCN提取局部特征、LSTM处理长时依赖、Attention机制聚焦关键信息。项目适用于金融市场、气象、健康管理、智能制造、环境监测、电力负荷、交通流量等领域,并提供了MATLAB和Python代码示例,展示模型的实际应用效果。; 适合人群:具备一定编程基础,对时间序列预测和深度学习感兴趣的工程师和研究人员。; 使用场景及目标:① 提高时间序列预测精度,尤其在多变量和复杂时序数据中;② 实现高效的参数优化,缩短模型训练时间;③ 增强模型的自适应性和泛化能力,确保在不同数据条件下的稳定表现;④ 为金融、气象、医疗、制造等行业提供智能化预测支持。; 其他说明:本项目不仅展示了理论和技术的创新,还提供了详细的代码示例和可视化工具,帮助用户理解和应用该模型。建议读者在实践中结合实际数据进行调试和优化,以获得最佳效果。
2026-01-12 10:43:31 41KB LSTM Attention 时间序列预测
1
本文围绕EESM(增强型有效信号到干扰加噪声比)展开,重点研究如何通过MATLAB实现SINR(信号到干扰加噪声比)的显著提升(至少3dB)。项目内容涵盖无线通信中的SINR映射优化、接力切换算法、OFDM系统建模与仿真。使用MATLAB及Simulink工具完成算法实现、数据处理与图形化展示,适用于无线通信系统性能优化的研究与实践,帮助学习者掌握现代通信系统中的关键优化策略与仿真技术。文章详细介绍了EESM原理与应用场景、SINR定义与性能优化方法、MATLAB在通信系统仿真中的应用、OFDM系统建模与仿真以及SINR提升前后对比图形化展示等内容。 在无线通信技术领域,信号到干扰加噪声比(SINR)是衡量通信质量的关键指标,它直接关系到通信系统的性能。SINR的提升意味着通信信号更加清晰,抗干扰能力更强,通信可靠性更高。本文介绍了一种通过MATLAB实现增强型有效信号到干扰加噪声比(EESM)的方法,旨在显著提升SINR至少3dB。具体来说,文章内容包含了SINR映射优化、接力切换算法、正交频分复用(OFDM)系统建模与仿真。 EESM的原理和应用场景是整个研究的理论基础。EESM是一种用于无线通信系统性能评估的算法,它通过将不同信道条件下的SINR映射为一个统一的性能指标。这一映射过程不仅简化了系统分析,还为通信系统的性能优化提供了理论依据。 SINR定义了通信信道的信号质量,性能优化方法包括算法优化、链路自适应技术、功率控制、天线技术等多种途径。通过这些技术的应用,可以降低干扰,提高信号强度,从而达到提升SINR的目的。 在实际操作过程中,MATLAB和Simulink作为强大的数学计算与仿真工具,为研究者提供了进行复杂算法实现、数据处理和图形化展示的平台。文章详细介绍了如何利用这两个工具,通过编写项目代码,实现SINR的优化和EESM的应用。 针对OFDM系统建模与仿真部分,文章讲解了如何在MATLAB环境下构建OFDM系统模型,并通过仿真验证SINR提升的效果。OFDM是目前广泛应用的无线通信技术之一,以其高频率效率和良好的抗多径干扰性能受到青睐。在OFDM系统中实施SINR优化,能够进一步提升系统的性能。 文章还提供了SINR提升前后的对比图形化展示,这种直观的展示方式可以帮助研究人员和工程师更清晰地看到优化效果,为后续的研究和开发工作提供了可靠的参考。 综合来看,本文不仅仅是关于MATLAB实现SINR优化的项目代码介绍,更是对无线通信中SINR优化策略与仿真技术的全面讲解。它不仅包含了基础理论的讲解,还有针对性的工具使用和系统建模的实操内容,对于掌握现代通信系统的关键优化策略和仿真技术提供了实用的指导。
2026-01-11 20:35:59 576KB 软件开发 源码
1
用Matlab实现sgd,adam,admm,proximal_grad,rmsp,fista,adaptive_grad,subgradient等优化算法,来求解拉索问题和逻辑回归问题。利用SVM和Matlab代码来读取数据集,能够实现一定的效果。 (需要自己安装SVM) 在当前大数据和人工智能快速发展的背景下,优化算法的研究与应用成为了一个极其重要的领域。《优化理论及应用》大作业要求学生深入理解并实现多种先进的优化算法,并将它们应用于解决实际问题,如拉索问题和逻辑回归问题。这些算法包括随机梯度下降(SGD)、自适应矩估计(Adam)、交替方向乘子法(ADMM)、近端梯度法(Proximal Gradient)、随机平均梯度下降(RMSP)、快速迭代收缩阈值算法(FISTA)、自适应梯度算法(Adaptive Gradient)和次梯度法(Subgradient)。 随机梯度下降法是最基本的优化算法之一,通过每次迭代使用一个或一小批样本的梯度来更新模型参数,能够有效处理大规模数据集。自适应矩估计(Adam)是一种用于深度学习的优化算法,它结合了动量法和RMSprop算法的特点,通过计算梯度的一阶矩估计和二阶矩估计来调整学习率,从而提高收敛速度和优化性能。 交替方向乘子法(ADMM)是一种求解分布式优化问题的算法,它将一个全局问题分解为多个子问题,并通过交替迭代的方式进行求解,特别适用于处理约束优化问题。近端梯度法(Proximal Gradient)是一种用于求解包含非光滑项的优化问题的算法,它通过引入近端算子来简化问题求解过程。 随机平均梯度下降(RMSP)是随机梯度下降的一种变体,它通过在每次迭代中使用一个随机样本集合的平均梯度来更新参数,从而提高稳定性和收敛速度。快速迭代收缩阈值算法(FISTA)是在梯度下降算法基础上提出的一种加速算法,它通过引入加速项来加快收敛速度。 自适应梯度算法(Adaptive Gradient),又称AdaGrad,是一种自适应调整每个参数学习率的优化算法,特别适合于稀疏数据的处理。次梯度法(Subgradient)是处理优化问题中非可微分函数的一种方法,它通过计算次梯度来进行参数更新,广泛应用于非光滑优化问题。 在实现这些算法时,学生需要熟悉Matlab编程环境,能够利用Matlab进行编程并解决优化问题。此外,学生还需要利用支持向量机(SVM)来处理数据集,SVM是一种强大的机器学习算法,它通过在特征空间中寻找最优超平面来实现分类和回归任务。在大作业中,学生需要自行安装SVM,并编写Matlab代码来读取和处理数据集,然后运用上述优化算法来训练模型,并尝试实现一定的效果。 通过完成这项大作业,学生不仅能够深入理解各种优化算法的理论基础和计算方法,而且能够通过实践操作提高自己的编程能力和解决实际问题的能力。这不仅对学术研究具有重要意义,而且对于未来进入工业界或从事相关领域的研究工作也具有很大的帮助。
2026-01-10 11:58:40 91KB matlab
1
内容概要:本文详细介绍了使用Verilog手写实现FPGA以太网接口的设计,涵盖MAC层、TCP/IP协议栈的关键技术和优化方法。具体包括CRC校验、TCP状态机、AXI Stream封装、物理层适配等内容。文中提供了大量代码片段展示实现细节,并讨论了调试过程中遇到的问题及其解决方案。此外,还展示了通过Python进行上位机通信的实际效果。 适合人群:具备一定硬件设计基础,尤其是对FPGA和网络协议感兴趣的工程师和技术爱好者。 使用场景及目标:适用于需要深入了解FPGA网络协议栈实现原理的研究人员,以及希望在嵌入式系统中集成自定义网络协议的应用开发者。主要目标是掌握从物理层到应用层的完整网络协议栈设计方法。 其他说明:文章不仅提供理论讲解,还包括具体的代码实现和调试技巧,帮助读者更好地理解和实践。同时,附带的抓包实测指南、协议原理解析等资料为初学者提供了全面的学习资源。
2026-01-10 01:10:51 123KB FPGA Verilog TCP/IP协议栈 Stream
1
本文详细介绍了使用粒子群算法(PSO)求解带约束优化问题的原理及Python实现。通过罚函数法将约束优化问题转化为无约束问题,具体包括约束惩罚项的计算、归一化处理以及粒子优劣比较规则。文章提供了完整的Python代码实现,涵盖初始化参数、适应度函数和约束惩罚项计算、粒子速度和位置更新、历史最优位置更新等关键步骤。最后通过一个具体算例展示了算法的应用,包括目标函数和约束条件的定义、迭代过程的可视化以及最优解的获取。该实现能够有效处理包含等式和不等式约束的优化问题,为工程优化问题提供了实用解决方案。 粒子群优化算法(Particle Swarm Optimization, PSO)是一种群体智能优化方法,它通过模拟鸟群的觅食行为来寻找最优解。在处理约束优化问题时,PSO需要对基本算法进行适当的修改以适应约束条件的存在。罚函数法是处理约束优化问题的常用技术之一,它通过对目标函数增加一个与违反约束程度相关的惩罚项,从而将原问题转化为无约束问题。 在PSO的罚函数法中,首先需要计算约束惩罚项,这通常涉及到对违反的每个约束进行度量,并将这些度量累加或组合起来形成一个总惩罚项。需要对约束惩罚项进行归一化处理,以确保惩罚项与目标函数在量级上具有一致性,便于在优化过程中进行统一评价和比较。在粒子群算法中,每个粒子代表优化问题的一个潜在解,粒子的速度和位置代表解的搜索方向和当前值。为了在约束优化问题中应用PSO,需要定义一个适应度函数,该函数需要综合考虑目标函数值和约束惩罚项的大小。 在粒子群算法的每次迭代中,首先会根据个体经验和社会经验来更新粒子的速度和位置,然后计算每个粒子的适应度值。如果某个粒子的适应度值有所提高,就会更新该粒子的历史最优位置,并可能更新全局最优解。粒子的位置更新通常受到速度的限制,并且在算法的设计中可能包括位置的边界处理机制,确保粒子在定义好的搜索空间内移动。 在Python实现中,关键步骤包括初始化粒子的位置和速度参数,定义适应度函数和约束惩罚项的计算方法,以及更新粒子速度和位置的算法。完整的代码实现会涉及到对这些关键步骤的编程,确保算法可以按照预定的规则进行迭代并最终收敛到最优解。 算例演示是理解PSO算法应用的重要组成部分。通过一个具体的优化问题定义,可以展示如何在Python中实现PSO算法的各个部分,并通过可视化迭代过程和最终的解,直观地理解算法的工作原理和效能。这样的算例不仅帮助读者理解算法的执行流程,还能够验证算法的正确性和有效性。 总体而言,粒子群算法结合罚函数法,为解决工程领域中广泛存在的各种约束优化问题提供了一种行之有效的算法框架。通过Python编程语言的实现,这一框架得到了广泛的应用和验证,为工程优化问题的求解提供了实用的解决方案。
2026-01-09 23:06:56 50KB 软件开发 源码
1
通过数值模拟,验证了水力割缝对煤体卸压、增加了瓦斯流通通道;得到了最优的喷嘴出口压力为30 MPa;试验得到喷嘴直径准2 mm、收缩段长度10 mm、直柱段长度8 mm、内锥角13°的圆锥形喷嘴为最优参数。水力割缝在突出矿井瓦斯抽采现场应用表明:水力割缝影响半径范围内的钻孔瓦斯抽采的瓦斯流量、瓦斯浓度、瓦斯抽采量明显提高,强化抽采效果好。
2026-01-08 19:37:00 178KB 行业研究
1
本研究聚焦于低密度奇偶校验码(LDPC码)的神经网络归一化译码算法优化。LDPC码作为一种先进的信道编码技术,在无线通信和数据存储领域具有广泛应用。随着无线通信技术的飞速发展,对译码算法的性能提出了更高的要求。神经网络归一化译码算法作为解决传统算法局限性的一种新兴方法,在性能上具有明显的优势,但同时也存在诸多挑战和优化空间。 研究内容包括了背景介绍与现状概述、神经网络译码算法概述、算法优化策略分析、仿真实验与性能评估、未来研究方向展望等几个主要部分。文章详细介绍了LDPC码的基本概念及其在通信领域的重要性,并概述了当前神经网络在LDPC译码中的应用,特别是归一化译码算法的现状和挑战。在此基础上,文章进一步探讨了神经网络译码算法的基本框架和工作原理,突出了归一化译码算法的重要性和其面临的问题。 针对存在的问题,研究者提出了一系列优化策略,包括网络结构设计的优化、训练方法的改进、参数调整策略等。这些优化策略不仅有详细的理论依据,还展示了实施细节,以期提升算法性能。仿真实验部分则通过具体实验验证了优化后的神经网络归一化译码算法在提高译码性能、降低错误率等方面的优势,并对优化策略的有效性进行了评估。 研究展望了未来可能的研究方向,总结了研究成果,并指出了未来可能面临的问题和挑战。文章强调,尽管当前的研究取得了一定成果,但仍然有诸多工作需要深入,如算法的进一步优化、在更广泛的应用场景中测试算法性能、理论与实践的深入结合等。 在纳米材料应用研究中,文章聚焦于锂离子电池的性能提升,并讨论了几种关键类型的纳米材料:碳纳米管(CNTs)、石墨烯、氮掺杂碳纳米管(N-CNTs)和金属氧化物纳米颗粒等。这些材料能够通过其独特的微观结构和表面能特性显著改善锂离子电池的性能,如能量密度和循环寿命。例如,碳纳米管因其丰富的孔隙结构和高电导率,被广泛应用于锂离子电池正极材料。通过将CNTs与传统石墨负极结合,能显著提升能量存储容量,降低充电时间。引入氮元素形成的氮掺杂碳纳米管(N-CNTs)能进一步增强电子传输能力和机械强度,提高电池整体性能。 本研究深入探讨了LDPC码的神经网络归一化译码算法的优化问题,提出了多种改进策略,并通过仿真实验验证了优化效果。同时,文章还对锂离子电池中的纳米材料应用进行了详细分析,展现了这些材料在提升电池性能方面的潜力。
2026-01-08 18:57:21 45KB
1
TSMC 65nm工艺库中EMXProc文件的关键配置及其对射频电路仿真准确性的影响。作者分享了自己在2.4GHz VCO项目中遇到的问题及解决方法,强调了材料属性、金属层厚度、衬底电阻率等重要参数的正确设置对于获得准确仿真结果的重要性。文中还提供了具体的配置示例以及一些实用的操作建议,如使用--calibrate参数进行校准、检查金属边缘粗糙度设置、确保介质层叠顺序正确、保持足够的衬底接触网格密度等。此外,还介绍了一个提高效率的小技巧,即利用Matlab和Python自动化工具来加速参数调优过程。 适合人群:从事射频集成电路设计的研究人员和技术工程师,特别是那些需要使用TSMC 65nm工艺库进行电磁仿真工作的专业人士。 使用场景及目标:帮助用户掌握EMXProc文件中各个参数的具体含义及其对仿真结果的影响,避免因参数设置不当而导致的仿真误差,从而提升工作效率并减少试错成本。 阅读建议:由于涉及到较多的专业术语和技术细节,在阅读过程中可以结合实际项目经验进行理解和应用,必要时查阅相关文献资料加深认识。
2026-01-08 14:27:24 449KB
1