Fusionzoom ARS亚马逊测评管理系统买家操作说明
2022-12-20 14:21:29 2.5MB 文档资料
1
医学影像作业 基于医学影像配准+DUNet实现的视网膜血管检测_眼底血管分割源码+数据集+实验报告.zip 图像配准 眼底血管分割实验 详细操作说明 实验报告 【实验思路】 1.图像预处理: 单通道化RGB2Gray 归一化 对比度限制自适应直方图均衡化 伽马校正 2.图像分割成小块patch 3.torch写网络 Unet ![Unet.png](./show_img/Unet.png) - Unet++ ![Unet++.png](./show_img/Unet++.png) 4.训练与测试,计算每个小patch的train_loss和dice_score 5.合并图像 6.计算整体测度 【实验结果】 CHASE数据集用cuda训练batchsize为2,网络采用UNet++,轮数epoch=5,测试集结果:avarage Dice: **78.03%**, avarage Accuracy: **96.91%** DRIVE数据集用cpu训练batchsize为8,网络采用UNet,轮数epoch=5,测试集结
基于Mobilenetv2和mobilenetv3算法实现6种风景识别分类系统完整源码(带数据集和模型及操作说明).zip 【资源说明】 1、实现的有Mobilenetv2和Mobilenetv3网络,模型只有Mobilenetv3训练的,v2模型需自己换下网络自己训练,操作简单。 2、资源附有数据集,有各种评估指标曲线,数据增强脚本、数据增强后的截图等,这些都可以放进课程报告或者毕设LW中。 3、可选择修改各种损失函数(已实现),激活函数,学习率、训练迭代次数、图像输入大小等参数自定义。 4、使用的是pytorch框架。 【备注】 主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
基于python实现多张图像无缝拼接完整源码+项目操作说明.7z 基于python实现多张图像无缝拼接完整源码+项目操作说明.7z 基于python实现多张图像无缝拼接完整源码+项目操作说明.7z 图像拼接并非简单的将两张有共同区域的图像把相同的区域重合起来,由于两张图像拍摄的角度与位置不同,虽然有共同的区域,但拍摄时相机的内参与外参均不相同,所以简单的覆盖拼接是不合理的。因此,对于图像拼接需要以一张图像为基准对另外一张图像进行相应的变换(透视变换),然后将透视变换后的图像进行简单的平移后与基准图像的共同区域进行重合。 拼接效果:https://blog.csdn.net/DeepLearning_/article/details/127721721#comments_24570232
一个基于机器学习的新闻标题分类系统源码+数据集+训练好的模型+项目操作说明_本科毕设项目.7z bert_base中文预训练模型训练NLPCC2017 Task2新闻标题分类数据集的句向量 【环境配置要求】 Python:3.8.13 操作系统:Windows 数据库:MySQL Web框架:Flask 模型训练:sklearn 1.Anaconda创建虚拟环境 conda create -n Graduation python=3.8 命令行切换到对应目录 2.安装第三方库 pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple 3.将数据导入数据库 mysql -u root -p --local-infile=1 < D:\Bachelor_Graduation\Bachelor_Graduation.sql 【备注】主要针对正在做毕设的同学和需要项目实战的机器学习、深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。
基于yolov5+大疆教育无人机Tello TT实现目标识别检测+追踪测距完整源码+数据集+训练好的模型+操作说明文档.7z 数据集目标是旗、圈识别 模型已经训练调优 请参考项目说明中的步骤来操作。 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
yolov5+PyQt5实现玩手机行为检测语音告警源码_带GUI界面+模型(5千多个目标训练)+评估指标曲线+操作说明.zip 包含如下: yolov5算法 pyqt5 GUI界面 检测到玩手机语言告警 玩手机模型 评估指标曲线+操作说明 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
2022-12-11 09:28:33 32.54MB yolov5 gui界面 玩手机检测告警 毕设源码
毕设项目 基于VGG19网络实现5类水果识别系统源码+数据集+模型+项目操作说明 主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
基于深度学习+Vue+Flask的水果识别分类系统源码+模型+项目操作说明 1、本项目使用迁移学习技术,对在ImageNet数据集上带有预训练权重VGG16、ResNet50、MobileNetV2、DenseNet121模型进行微调,然后将其用在水果数据集上。最终训练后的模型能够准确对输入图片进行分类,并且最高准确率达到93.08%。 2、设计并实现前后端分离系统,前端Vue,后端Flask 后端模型对输入图片识别并返回用户。
2022-12-07 16:28:13 17.47MB 深度学习 水果识别分类 Vue Flask
项目名称是“来往行人检测跟踪计数”,GUI界面可以统计显示来回经过的行人数量。 基于YOLOv5+deepsort+pyqt5GUI界面行人跟踪计数系统设计源码+模型+操作说明+数据集 附有详细运行操作说明,按照一步步来就可以了。 模型是yolov5行人检测模型,提供的有人形检测数据集+训练代码,可以自己训练模型。 当然也可以训练出车辆检测模型,对车辆进行检测跟踪计数,换下模型即可。 【备注】有相关使用问题,可以留言或者私信于我,有问必答!
2022-12-06 17:26:47 662.04MB yolov5 pyqt5 deepsort 行人检测跟踪