参考资料:《python深度学习》第五章。keras官方中文文档。 使用数据集:数据集来自kaggle  https://www.kaggle.com/tongpython/cat-and-dog。 VGG16模型下载自GitHub:https://github.com/fchollet/deep-learning-models/releases。里面包括各种模型,如果你的keras模型导入过慢,你可以将模型下载下来再进行导入。 序言 当我们的数据集较小,只有几百几千张图片的时候,我们很难在一个新的网络结构上训练出具有很高准确率的模型,为此我们需要借助预训练网络模型(即已经训练好的网络模型,如
2021-11-23 16:42:43 63KB AS keras ras
1
用PyTorch微调预训练卷积神经网络
2021-11-17 11:34:33 21KB Python开发-机器学习
1
最简单的游戏变速器,适用于大部分的单机游戏,小部分的网络游戏,速度过快会卡顿,一般只会实现攻击速度与移动速度的加速
2021-11-14 15:03:23 403KB 变速器 变速齿轮
1
本文重点介绍连续精整生产线中关键设备下切式液压剪的主要结构及设计计算。下切式液压剪能够在线快速剪切料头料尾,且带钢便于通过。
2021-11-04 15:02:26 95KB 液压剪切
1
本文重点介绍连续精整生产线中关键设备下切式液压剪的主要结构及设计计算。下切式液压剪能够在线快速剪切料头料尾,且带钢便于通过。
2021-11-04 15:02:26 95KB 液压剪切
1
BERT和知识提炼的问题解答 该存储库包含必要的代码,以便微调SQuAD 2.0数据集上的BERT。 此外,的技术是通过微调施加使用BERT作为教师模型小队2.0数据集。 使用Google Colab的1个Tesla V100 GPU获得了所有结果。 1.什么是SQuAD? 斯坦福问答数据集(SQuAD)是一种阅读理解数据集,由人群工作人员在一组Wikipedia文章上提出的问题组成,其中每个问题的答案是对应阅读段落或问题的一段文本或跨度可能无法回答。 SQuAD 2.0将SQuAD 1.1中的100,000个问题与超过50,000个由对抗性工作者对抗性编写的问题相结合,看起来类似于可回答的问题。 为了在SQuAD 2.0上取得出色的成绩,系统不仅必须在可能的情况下回答问题,而且还必须确定该段落何时不支持任何答案并放弃回答。 有关SQuAD数据集和当前排行榜的更多信息,您可以访问以下。
1
介绍 我们发布了用于在UCF101上微调I3D模型的完整代码(包括培训阶段和测试阶段)。 I3D论文: 。 有关I3D的模型和详细信息,也请参考i3d。 先决条件 软件 Ubuntu 16.04.3 LTS Python 2.7 CUDA8 CuDNN v6 Tensorflow 1.4.1 硬件 GTX 1080 Ti 怎么跑 1.克隆此仓库 git clone https://github.com/USTC-Video-Understanding/I3D_Finetune 2.下载动力学预训练的I3D模型 为了在UCF101上微调I3D网络,您必须在下载DeepMind提供的Kinetics预训练I3D模型。 具体来说,下载repo并将data/checkpoints文件夹放入我们的I3D_Finetune回购的data I3D_Finetune : git clone ht
1
BERT-BiLSTM-CRF-NER Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning 使用谷歌的BERT模型在BLSTM-CRF模型上进行预训练用于中文命名实体识别的Tensorflow代码' 中文文档请查看 如果对您有帮助,麻烦点个star,谢谢~~ Welcome to star this repository! The Chinese training data($PATH/NERdata/) come from: The CoNLL-2003 data($PATH/NERdata/ori/) come from: The evaluation codes come from: Try to implement NER work based on google'
2021-10-17 21:06:39 482KB crf named-entity-recognition ner bert
1
星团聚类 介绍 恒星聚类算法是一种聚类技术,其灵感很松散,类似于恒星系统的形成过程。它的目的是作为一种替代性的聚类算法,它不需要事先知道聚类的数量或进行任何超参数调整。 安装 应安装以下依赖项: 麻木 科学的 设置 建议您使用Scikit-Learn,因为此处提供的实现旨在与Scikit-Learn配合使用,以替代其他算法。 实际的算法位于star_clustering.py中,可以由import语句调用: from star_clustering import StarCluster 然后创建一个对象以实例化该算法的实例: star = StarCluster() 然后,像在Scikit-Learn中使用任何其他聚类算法一样,调用拟合或预测函数。 测试脚本 提供了三个测试脚本,旨在显示该算法对非常不同类型的数据的有效性。 plot_cluster_comparison.py wo
2021-09-22 10:14:48 1004KB Python
1
使用PyTorch对预训练的卷积神经网络进行微调。 产品特点 可以访问ImageNet上经过预训练的最受欢迎的CNN架构。 自动替换网络顶部的分类器,使您可以使用具有不同类数的数据集训练网络。 使您可以使用任何分辨率的图像(不仅限于在ImageNet上用于训练原始模型的分辨率)。 允许添加一个Dropout层或一个自定义池层。 支持的架构和模型 从包中: ResNet( resnet18 , resnet34 , resnet50 , resnet101 , resnet152 ) ResNeXt( resnext50_32x4d , resnext101_32x8d ) Dens
1