多方面张量分析,Tensor Analysis on Manifolds,资源来自互联网
2023-02-09 12:01:49 2.88MB 张量分析
1
语音识别 使用TensorFlow实现语音识别系统。 中篇文章的更多说明: : 二手图书馆 pip install tensorflow tensorflow_io 文件说明 test_load.py 加载Mozilla Common Voice的标签文件: : test_lstm.py 简单的LSTM模型可预测单词序列中的下一个单词。 它使用Mozilla Common Voice数据集标签文件。 test_trad.py Seq2Seq模型以与输入相同的语言翻译句子。 它使用Mozilla Common Voice数据集标签文件。 test_words.py 简单的LSTM模型可将音频转换为单词。 它使用语音命令数据集: : test_wordsFr.py 简单的LSTM模型可将音频转换为法语单词。 它使用此存储库中包含的自制数据集。 test_words_com
2023-01-30 10:23:58 13.83MB Python
1
在曲率属性计算之前需要对图像进行去噪预处理, 传统的图像滤波方法在去除噪声的同时会破坏边缘、线条、纹理等图像特征, 而基于偏微分方程的P-M模型在平滑过程中会出现块效应。针对这些问题, 提出了一种基于张量扩散的各向异性滤波的预处理方法。通过定义散布矩阵来获得丰富的图像局部结构信息, 然后利用这些结构来控制扩散过程, 以便实现图像的更好滤波。理论分析和实验结果表明, 相较于一些常规的图像滤波算法, 各向异性滤波得到的曲率属性效果更清晰、质量更高。
1
T3C_Toolbox_LYuan 该存储库提供了两种张量完成算法:张量训练加权优化(TTWOPT)和张量训练随机梯度下降(TTSGD),它们基于张量训练分解和基于梯度的优化方法。 [1]袁隆浩,赵启斌和曹建庭。 “通过张量-序列分解完成缺少条目的高阶张量数据。” 国际神经信息处理会议。 斯普林格(Cham),2017年 [2]袁龙浩,赵启斌和曹建庭。 “在张量-训练格式下通过基于梯度的优化完成高维张量。” arXiv预印本arXiv:1804.01983(2018)。
2023-01-03 17:11:03 2.09MB HTML
1
为了提高图像分类准确率,提出了一种基于低秩表示的非负张量分解算法。作为压缩感知理论的推广和发展,低秩表示将矩阵的秩作为一种稀疏测度,由于矩阵的秩反映了矩阵的固有特性,所以低秩表示能有效地分析和处理矩阵数据,把低秩表示引入到张量模型中,即引入到非负张量分解算法中,进一步扩展非负张量分解算法。实验结果表明,所提算法与其他相关算法相比,分类结果较好。
2023-01-02 15:23:25 729KB 图像分类 低秩表示 非负 张量分解
1
交通量预测matlab代码具有模式、缺失值和异常值的真实世界张量流的稳健分解 (ICDE'21) 这个存储库包含论文的源代码,由 和 提供,在 。 在这项工作中,我们提出了SOFIA ,这是一种在线算法,用于分解随着时间推移而随着时间推移而丢失条目和异常值的真实世界张量。 通过平稳而紧密地结合张量分解、异常值检测和时间模式检测,SOFIA 与最先进的竞争对手相比具有以下优势: 稳健而准确:与最佳竞争对手相比,SOFIA 产生的插补和预测错误最多可降低 76% 和 71%。 快速:与第二准确的方法相比,使用 SOFIA 使插补速度提高了 935 倍。 可扩展:SOFIA 在时间演化的张量中以增量方式处理新条目,并且它与每个时间步长的新条目数量成线性比例。 数据集 名称 描述 尺寸 时间粒度 处理过的数据集 原始来源 英特尔实验室传感器 位置 x 传感器 x 时间 54 x 4 x 1152 每 10 分钟 网络流量 来源 x 目的地 x 时间 23 x 23 x 2000 每小时 芝加哥出租车 来源 x 目的地 x 时间 77 x 77 x 2016 每小时 纽约出租车 来源 x 目的地
2022-12-31 19:53:01 28.02MB 系统开源
1
一种基于张量的交通数据补全方法
2022-12-29 16:14:24 923KB 研究论文
1
提取均值信号特征的matlab代码两个扬声器的基于 LSTM/BLSTM 的 PIT 在多通话者混合语音分离和识别方面取得的进展,通常被称为“鸡尾酒会问题”,并没有那么令人印象深刻。 尽管人类听众可以很容易地感知混合声音中的不同来源,但对于计算机来说,同样的任务似乎极其困难,尤其是当只有一个麦克风记录混合语音时。 1. 运行性能 注意:训练集和验证集包含通过从 WSJ0 集中随机选择说话者和话语生成的两个说话者混合,并以 -2.5 dB 和 2.5 dB 之间统一选择的各种信噪比 (SNR) 混合它们. 对于LSTM ,不同性别的混合音频结果如下: 对于BLSTM ,不同性别的混合音频结果如下: 从上面的结果可以看出,混合性别音频的分离效果优于同性音频,BLSTM 的性能优于 LSTM。 2. 评价标准 SDR:信号失真比 SAR:信号与伪像的比率 SIR:信号干扰比 STOI:短期客观可懂度测量 ESTOI:扩展的短期目标可懂度测量 PESQ:语音质量的感知评估 3. 依赖库 matlab(我的测试版:R2016b 64位) tensorflow(我的测试版本:1.4.0) anac
2022-12-21 11:33:49 5.37MB 系统开源
1
张量入门级PPT,内部包括张量介绍,从基础入门到分解进阶,超级详细的PPT模板
2022-12-04 19:25:35 2.87MB 张量
因张量分析对于工程应用来讲十分重要,特上传一本《工程物理中的张量场论》,希望对各位有所帮助!
2022-12-03 11:46:11 3.74MB 张量场论
1