大地电磁信号是解释地质构造的重要信息载体,其受长周期和随机噪声影响严重,导致地质构造的反演结果出现严重的偏差。为了解决该问题,基于变分模态分解(Variational Mode Decomposition,VMD)提出了一种综合性的大地电磁信号去噪算法。对原始电磁信号进行多分辨VMD处理去除长周期噪声,采用小波包阈值去噪法去除信号的随机噪声,使用信号重构得到去噪处理后的大地电磁信号。使用此方法对工程实测大地电磁信号进行处理,结果表明,此方法能够对大地电磁信号的长周期噪声和随机噪声进行抑制,并且极大限度地保存了信号的有效分量,提高了时域信号的周期性,全频分段的视电阻率曲线得到了明显优化。
1
基于小波包熵和模糊C均值的轴承故障诊断MATLAB程序
2022-05-03 14:07:28 4KB matlab c语言 均值算法 源码软件
小波包分解与重构多种特征提取MATLAB代码 内容概要:该资源为博主自己编写,内含小波包分解与重构,小波包分解与重构后的频谱分析,小波包升降采样,小波包能量熵,小波包能量,小波包能量占比三种特征提取方法,内含封装好的特征提取函数,内含详细代码注释,更换输入数据就可直接运行,可直接更换小波包基函数,可直接生成特征向量,。 理论描述:小波包分解(wavelet packet decomposition,WPD)能够同时在低频和高频带内对信号进行分解,并自适应地确定不同频段上信号的分辨率,且各分解频带内信号相互独立、无冗余、不疏漏[。小波包分解层数越多,分辨率越高,包含故障信息越丰富。但层数过多会造成计算复杂且分析速度慢。一般需要根据实际需要和相关实验选取分解层数以及小波基函数。能量熵表示信号中出现的状态数目的可能性及相应概率,可用来评估信号的复杂性,可用来描述电信号、轴承等振动信号的特征变化。 适用人群:信号处理,机器学习,深度学习研究者对信号进行特征分析以及特征提取。 本代码为matlab代码,在matlab2020上编写。
提出了一种小波包自适应滤波算法。该算法将信号的小波包分解和自适应滤波相结合,先将信号进行小波包分解,然后对子信号进行自适应滤波,最后将信号合成从而达到信号降噪的目的。使用该算法对电压信号进行降噪,结果表明小波包自适应滤波算法具有良好的降噪性能。
2022-04-27 10:04:08 203KB 小波包 自适应滤波 去噪
1
小波及小波包图像去噪 ,用matlab编程实现,,并将两者综合在一起去噪
2022-04-23 16:56:18 5KB 小波 小波包 图像去噪
1
针对如何在情感识别中有效处理脑电信号和提取有用信息的问题,对实验采集的脑电信号进行小波包分解,通过对相关频段信号的重构,提取出脑电信号中能用于情感状态识别的β波节律,对其在不同情感状态下进行谱分析。仿真实验结果表明,将脑电信号中的β波节律用于情感状态识别是可行的。
1
小波包特征提取
2022-04-11 20:35:39 636B 小波包
1
小波包变换在信号处理中的应用,蔡云,戴鹏,本文首先介绍了小波包的理论和小波包算法,由于其具有良好的时-频特性,广泛应用于信号处理中。文中给出了两个具体例子来验证小��
2022-04-11 08:36:00 267KB 小波包变换
1
于MATLAB的小波包分析在信号降噪中的应用
2022-03-31 00:24:46 290KB MATLAB 小波包分析
1