随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 随着科学技术的发展,移动机器人及其应用不断提高单个已 经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决经不能满足复杂的 自动化任务要求,多个机器人协作技术成为迫切需解决问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 问题。对多机器人系统、协调作的研究是一项具有重要理论和现实意 义的工作。 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 本文以研究轿夫机器人协调运动控制为主要目标 ,为轿夫机器人设计 ,为轿夫机器人设计 ,为轿夫机器人设计 ,为轿夫机器人设计 ,为轿夫机器人设计 ,为轿夫机器人设计 ,为轿夫机器人设计 ,为轿夫机器人设计 ,为轿夫机器人设计 并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法并选择优良的运动控制方案, 包括机器人导航与定位算法结构设 计以及电路设计。 在轿夫机器人系 在轿夫机器人系 在轿夫机器人系 在轿夫机器人系 在轿夫机器人系 在轿夫机器人系 在轿夫机器人系 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 统中,两个轿夫机器人能相互协调运动是快速平稳完 成任务的前提条 成任务的前提条 成任务的前提条 成任务的前提条 成任务的前提条 成任务的前提条 成任务的前提条 件, 但是 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 轿夫机器人之间并没有直接通信功能,他们的协调 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 运动是一个难题。针对这实际情况,本文利用超声测距原理在手轿夫机器 人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手人和轿杆上安装了短距离超声波传感器,用来检测自动夫机 对手器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 器人的相对运动,及时把 自动轿夫机器人 自动轿夫机器人 自动轿夫机器人 自动轿夫机器人 自动轿夫机器人 自动轿夫机器人 自动轿夫机器人 的位置信息反馈到 的位置信息反馈到 的位置信息反馈到 的位置信息反馈到 的位置信息反馈到 的位置信息反馈到 的位置信息反馈到 的位置信息反馈到 手动轿夫机器人 手动轿夫机器人 手动轿夫机器人 手动轿夫机器人 手动轿夫机器人 手动轿夫机器人 手动轿夫机器人 的控 制系统。 轿夫机器人系统选用 32 位 ARM 微处理器 芯片 LPC2990LPC2990LPC2990LPC2990 和 LPC2131LPC2131LPC2131LPC2131 LPC2131,采用 ,采用 主 从控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 控制方式,处理器嵌入实时操作 系统 ,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主,提高控 制系统的多任务处理能力。主处理器 LPC299LPC299LPC299LPC299 0负责系统的任务调度,人机交互、传感器和外围电路控制; 从 LPC2131LPC2131LPC2131LPC2131 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 集中负责轿夫机器人的运动控制单元,接收增量编码和陀螺仪 以及超 以及超 声波传感器 输送的数据信号,计算机器人在全局坐标中当前位置 。 关键词: 关键词: 关键词: 轿夫机器人 ,运动控制 ,协作运动
2022-04-09 08:58:11 2.87MB 多机器人
1
我们研究了在 makespan(最后到达时间)标准上的图(MPP)上的最优多机器人路径规划问题。 我们实现了 A* 搜索算法来寻找解决方案。 在 MPP 实例中,机器人被唯一标记(即,可区分)并被限制在 nxn 平方连接图中。 在没有碰撞的情况下,机器人可能会在一个时间步长内从一个顶点移动到相邻的一个顶点,这可能发生在两个机器人同时移动到同一顶点或沿同一条边向不同方向移动时。 我们的 MPP 公式的一个显着特点是我们允许机器人在完全占用的循环中同步旋转。 为了解决上述问题,我们实施了 A* 算法,以从给定的初始 3x3 机器人位置和所需的 3x3 机器人位置中找到最佳路线。 第一个算法开始构建图,其连接向我们展示了可能的运动。 然后我们将其扩展为基于时间的图。 根据时间扩展图,每个时间步长都复制所有节点。 这意味着如果我们有 3x3 节点作为给定的例子,我们将在我们的时间扩展图中有 3
2022-04-02 11:21:58 146KB matlab
1
研究了多机器人观测到同一目标时的协同定位问题。建立了各个机器人相对观测一致程度的数学描述模型,进而提出用基于极大熵准则的最大熵博弈获取使相对观测一致程度最优的协同定位方式。针对博弈结果的多样性,相应地改变观测方程的雅克比矩阵,推导了可适应多机器人各种博弈结果的扩展Kalman滤波协同定位算法。仿真实验表明,方法可实现机器人团队在协同定位时有选择、更高效地共享相互间的观测信息;在保证协同定位精度提高的同时有效地消除了多机器人相对观测信息间的冲突。
2022-03-28 14:19:05 1.16MB 工程技术 论文
1
一种多机器人系统任务均衡分配协同工作控制方法.pdf
1
导航_多 使用ros和发送目标的多机器人导航阶段模拟
2022-03-02 09:16:28 83KB C++
1
matlab kinect 代码使用分布式估计和基于视觉的导航对多个机器人进行基于视觉的分布式群控制 布拉德利大学高级项目。 基于视觉的多机器人编队跟踪。 该项目包含用于实现和模拟多智能体目标跟踪机器人的 Simulink 代码和 matlab 代码。 工作已完成。 代码旨在在 QBot2 上实现,该 QBot2 具有基于深度/RGB 的 kinect 相机。 该设计将采用基于视觉的方法来定位和包围移动目标。 请查看我们的网站了解更多详情。 元 安东尼·勒
2021-12-23 19:20:00 91.09MB 系统开源
1
The MRSim (Multi-Robot Simulator) is an extension of the Autonomous mobile robotics toolbox SIMROBOT (SIMulated ROBOTs) created for MatLab 5 in 2001. MRSim allows the user to simulate the behavior of multiple mobile robots in virtual environments. When compared to its predecessor SIMROBOT, MRSim presents two key contributions: 1) It is fitted to the new MatLab versions - Previously, users were unable to work with SIMROBOT functions since most of them were incompatible with the new MatLab versions. MatLab significantly evolved over the last 10 years, making SIMROBOT obsolete. In this extension, all features of SIMROBOT were updated and improved based on the new MatLab functions; 2)It is also fitted to suit multi-robot applications - although SIMROBOT was endowed with various interesting features for mobile robotics, it presented several limitations for multi-robot applications. Therefore, MRSim was created primarily to allow users to develop multi-robot applications, which would benefit working with some specific requirements such as multi-hop communication. Moreover, most of the functionalities in MRSim have an integrated help (which can be accessed just by typing help function) that allows to easily understand the dynamics of how to create and run simulations. In sum, just like SIMROBOT, each robot in MRSim can be equipped with several virtual sensors and can be driven by its own control algorithm. The toolbox includes two independent applications. The first one is the EDITOR (simedit), which allows the user to create and modify the virtual environment,to edit the control algorithms of robots, to load and save simulation, and others. The second application, SIMULATOR (simview), can be run directly from the EDITOR or separately from MatLab Command Window and serves as a simulation viewer. A MatLab help file is being currently created and will be add in the future.
2021-11-09 22:02:02 2.18MB 多机器人 仿真 协同控制 算法
1
一种多个机器人完成路径规划的方法
2021-11-09 18:15:10 1.72MB 人工智能 机器人 路径规划
1
本博文是基于这个ROS软件包(https://github.com/hrnr/m-explore)的学习笔记 目录 multi robot exploration nav_msgs/OccupancyGrid  map_msgs/OccupancyGridUpdate move_base multirobot_map_merge 参考资料 multi robot exploration 这个包名为explore_lite,采用greedy frontier-based exploration。当节点运行时,机器人会贪婪地探索环境,直到找不到边界为止。就是这些机器人会一直把整个区域都探索完。如
2021-11-09 09:36:35 521KB ros 学习 学习笔记
1
目前由于机载设备的容量和处理能力有限,机器人完成复杂任务的能力受到限制。随着无线网络技术的快速发展,远程控制机器人成为了可能。以云平台为基础,设计了一种具有海量处理能力的多机器人远程实时控制系统,通过机载摄像头实时捕获画面并通过无线网络传给搭建在云平台上的后台处理系统,后台处理系统按照设定的规则对画面做出判断,并将控制指令返回给机器人执行相应动作。
2021-10-14 19:57:48 555KB 机器人远程控制
1