多旅行商matlab实验源码实现了三种多旅行商问题
% MTSPOF_GA Fixed Open Multiple Traveling Salesmen Problem (M-TSP) Genetic Algorithm (GA)
% Finds a (near) optimal solution to a variation of the "open" M-TSP by
% setting up a GA to search for the shortest route (least distance needed
% for each salesman to travel from the start location to unique
% individual cities and finally to the end location)
%
% Summary:
% 1. Each salesman starts at the first point, and ends at the last
% point, but travels to a unique set of cities in between (none of
% them close their loops by returning to their starting points)
% 2. Except for the first and last, each city is visited by exactly one salesman
%
% Note: The Fixed Start is taken to be the first XY point and the Fixed End
% is taken to be the last XY point
%
% Input:
% XY (float) is an Nx2 matrix of city locations, where N is the number of cities
% DMAT (float) is an NxN matrix of city-to-city distances or costs
% SALESMEN (scalar integer) is the number of salesmen to visit the cities
% MIN_TOUR (scalar integer) is the minimum tour length for any of the
% salesmen, NOT including the start point or end point
% POP_SIZE (scalar integer) is the size of the population (should be divisible by 8)
% NUM_ITER (scalar integer) is the number of desired iterations for the algorithm to run
% SHOW_PROG (scalar logical) shows the GA progress if true
% SHOW_RES (scalar logical) shows the GA results if true
%
% Output:
% OPT_RTE (integer array) is the best route found by the algorithm
% OPT_BRK (integer array) is the list of route break points (these specify the indices
% into the route used to obtain the individual salesman routes)
% MIN_DIST (scalar float) is the total distance traveled by the salesmen
%
% Route/Breakpoint Details:
% If there are 10 cities and 3 salesmen, a possible route/break
% combination might be: rte = [5 6 9 4 2 8 3 7], brks = [3 7]
%
1