使用静息态fMRI脑数据,构建了基于格兰杰因果分析的有向功能脑网络,对正常对照组和轻度认知障碍的早期和晚期进行识别。在特征选择部分,有向脑网络的局部属性和全局属性被施以双样本t检验,三组间具有显著差异的属性被选作分类特征;接着,支持向量机算法被应用于后续的分类。最后,运用单因素方差分析探测三组间两两均具有显著差异的脑区信息。实验结果表明,本研究取得了较好的分类效果,颞中回、楔前叶、海马旁回等许多脑区在3个考察组中均体现出了显著性差异,这与已有研究的结果基本一致。
2022-05-08 17:00:00
1.21MB
行业研究
1