基于暗通道先验的图像去雾算法+含代码操作演示视频 运行注意事项:使用matlab2021a或者更高版本测试,运行里面的Runme.m文件,不要直接运行子函数文件。运行时注意matlab左侧的当前文件夹窗口必须是当前工程所在路径。具体可观看提供的操作录像视频跟着操作。 %create original_dark_channel image with same size [m, n] = size(R_channel); dark_channel_image = zeros(m,n); %extract the minimum value of each point in RGB for dark_channel_image for i=1:m for j=1:n local_pixels =[R_channel(i,j), G_channel(i,j), B_channel(i,j)]; dark_channel_image(i,j) = min(local_pixels ); end end
2022-05-09 19:16:04 7.84MB 算法 源码软件 暗通道先验 图像去雾
大数据-算法-非参数先验分布的确定及其应用.pdf
2022-05-03 09:07:32 1.93MB big data 算法 文档资料
用暗通道先验实现图像去雾,darkchannel,基于透射率大气光,暗通道、
2022-04-28 18:58:45 1KB 暗通道先验
1
去雾算法 代码可行 修改图像路径即可
2022-04-28 18:37:22 1.24MB 去雾 暗通道先验方法
1
行业分类-设备装置-一种结合暗通道先验原理的偏振成像去雾方法
2022-04-24 18:12:47 1.16MB
1
利用大气散射模型的图像去雾研究,朱宁波,阮俊冬,为了获取清晰的去雾图像,提出一种基于暗原色先验和边界约束的单幅图像去雾算法。首先采用暗原色理论和边界约束理论分别获得天空
2022-04-21 15:32:10 917KB 暗原色先验
1
针对高光谱图像中含有大量混合像元,且大多数解混算法未能利用真实地物信息的问题,提出了一种利用先验信息约束的非负矩阵分解方法对高光谱进行解混。首先利用顶点成分分析法和全约束最小二乘法分别对端元矩阵和丰度矩阵进行初始化,然后利用本文算法对高光谱数据进行解混,最后对估计端元和估计丰度进行评价分析。实验显示,利用本文提出的方法对数据解混的结果优于其他约束的非负矩阵分解算法得到的结果,在求解过程中有很好的抗噪性能。
1
联合稀疏多重测量向量的约束和无约束分析和综合先验求解器。 运行 Matlab 文件需要 Sparco。 从http://www.cs.ubc.ca/labs/scl/sparco/下载并安装在 Matlab 路径中。
2022-04-14 19:08:52 5KB matlab
1
matlab案例有代码 [] [] 介绍 盲反卷积是许多实际应用中的经典但具有挑战性的低级视觉问题。 传统的基于最大后验(MAP)的方法在很大程度上依赖于固定的和手工制作的先验,这肯定不足以表征清晰的图像和模糊内核,并且通常采用特殊设计的交替最小化来避免琐碎的解决方案。 相反,现有的深度运动去模糊网络从大量训练图像中学习到映射到干净图像或模糊内核,但是在处理各种复杂和大尺寸模糊内核方面受到限制。 基于深度图像先验(DIP)[1]的动机,我们在本文中提出了两个生成网络,分别用于对清洁图像和模糊核的深度先验进行建模,并提出了一种针对盲反卷积的无约束神经优化解决方案(SelfDeblur)。 实验结果表明,与基准数据集和真实世界的模糊图像上的最新盲去卷积方法相比,我们的SelfDeblur可以实现显着的量化增益,并且在视觉上似乎更合理。 先决条件 Python 3.6,PyTorch> = 0.4 要求:opencv-python,tqdm 平台:Ubuntu 16.04,TITAN V,cuda-10.0&cuDNN v-7.5 用于计算的MATLAB 数据集 SelfLeblur在Lev
2022-04-12 10:45:37 2.82MB 系统开源
1
0积分下载,代码运行效果图见压缩包
2022-04-11 13:57:05 174KB
1