近年来,算法公平性文献中的论文激增,提出了算法偏差的各种技术定义和减轻偏差的方法。 在人们越来越担心算法决策可能会加剧社会不平等的情况下,从法律角度来看,这些缓解算法偏见的方法是否被允许是一个复杂但日益紧迫的问题。 特别是,使用受保护的类变量存在紧张关系:大多数算法偏差缓解技术都利用这些变量或代理,但反歧视原则强烈偏爱对它们视而不见的决策。 本文分析了解决算法偏见的技术方法在多大程度上与美国反歧视法兼容,并建议了一条实现更大兼容性的途径。这个问题至关重要,因为缺乏法律兼容性会导致有偏见的算法可能被视为合法允许的,而旨在纠正偏见的方法可能被视为非法歧视。 例如,美国住房和城市发展部(“HUD”)最近提出的一项规则本应确立美国对算法歧视的监管定义的第一个实例,将为住房的不同影响责任创造一个安全港——不使用受保护类变量或关闭代理的相关算法。 然而,最近的大量研究表明,简单地删除受保护的类变量和关闭代理对确保算法不会有偏见几乎没有作用。 事实上,这种在机器学习社区中被称为“通过无意识实现公平”的方法被广泛认为是幼稚的。 虽然在最终规则中删除了围绕算法的语言,但这种对决策中受保护属性可见性的关注是美国反歧视法的核心。因果推断提供了一种潜在的方式来协调算法公平技术与反歧视法。 在美国法律中,歧视通常被认为是“因为”受保护的阶级变量而做出的决定。 事实上,在促使 HUD 提议规则的德克萨斯州住房和社区事务部诉包容性社区项目公司案中,法院要求决策过程与不成比例的结果之间存在“因果关系”。 不是检查受保护的类变量是否出现在算法中,因果推断将允许使用受保护的类变量的技术,目的是否定与种族相关的数据中的因果关系。 虽然从相关性转变为因果性是具有挑战性的——尤其是在机器学习中,利用相关性做出准确预测通常是目标——这样做提供了一种调和技术可行性和法律优先级的方法,同时提供了针对算法偏见的保护。
1