内容索引:VC/C++源码,图形处理,几何变换  图象的几何变换,C 的算法实现,运行程序后主先打开一幅BMP位图,然后选择第二项内的某个选项,这些选项的大致意思是,X/Y坐标裁切、裁切、透明化、旋转、放大等。   命令行编译过程如下:   vcvars32   rc bmp.rc   cl geotrans.c bmp.res user32.lib gdi32.lib
1
hello-world代码,在自动构建中作为示例使用
2025-06-03 14:59:27 3KB hello-world java
1
### 单像空间摄影测量后方交会程序代码(VC++) #### 概述 本文将详细介绍一份关于单像空间摄影测量后方交会的程序代码,该代码使用C++编写,并在西南交通大学土木工程学院测绘工程专业进行研究与实践。单像空间后方交会在摄影测量领域具有重要的应用价值,它可以通过分析单个图像来确定相机的位置和姿态,以及场景中的某些三维点坐标。本程序主要处理了以下关键步骤: 1. **输入数据**:包括控制点的影像坐标和地面坐标。 2. **迭代计算**:利用初始估计值逐步优化相机位置、姿态参数等。 3. **旋转矩阵构建**:根据迭代得到的角度参数构建旋转矩阵。 4. **系数阵和常数项计算**:用于求解未知数的线性方程组。 #### 输入数据格式 输入文件包含控制点的影像坐标(像素坐标)和相应的地面坐标。具体格式如下所示: ``` [pic] ``` 这里`[pic]`代表具体的数值对,每一对由影像坐标和对应的地面坐标组成,例如: ``` xi yi Xg Yg Zg ... ``` 其中`xi`和`yi`表示第i个控制点的影像坐标;`Xg`, `Yg`, 和`Zg`表示其地面坐标。 #### C++源程序解析 本程序采用模板编程技术来提高代码复用性与灵活性,并且运用了一些基本的数学库函数,如`cmath`来进行必要的数学运算。 1. **变量定义** - 内方位元素`x0`, `y0`, 和焦距`fk`。 - 估算的比例尺`m`。 - 控制点信息矩阵`B`。 - 旋转矩阵`R`。 - 未知数矩阵`XG`。 - 临时矩阵`AT`、`ATA`、`ATL`。 2. **读取控制点数据** 通过`input()`函数从文件中读取控制点的影像坐标和地面坐标,并存储在数组`B`中。 3. **确定未知数的初始值** - 计算所有地面坐标的平均值`Xs`, `Ys`, `Zs`作为初始估计值的一部分。 - 根据这些平均值及其它已知参数(如焦距`fk`),设定初始的相机位置和姿态参数。 4. **迭代计算** - 使用`do...while`循环进行迭代计算,直到满足终止条件为止。 - 在每次迭代过程中,首先构建新的旋转矩阵`R`。 - 然后根据当前的旋转矩阵计算系数矩阵`A`和常数项向量`L`。 5. **系数矩阵和常数项计算** - 对于每个控制点,根据旋转矩阵和相机模型计算相应的系数矩阵`A`和常数项向量`L`。 - 这些系数和常数项用于后续的线性方程组求解,从而进一步更新相机位置和姿态参数的估计值。 #### 总结 这份C++程序提供了完整的单像空间摄影测量后方交会的实现方法,包括了数据读取、初始值设定、迭代计算过程以及最终结果的输出。通过对程序的逐行解析,我们可以清楚地了解到整个计算流程及其背后的数学原理。这种技术在测绘、遥感等领域有着广泛的应用前景,尤其是在需要从单一图像中恢复三维信息的情况下尤为有用。
1
MATLAB 排队论求解 基于给定的文件信息,我们可以生成以下知识点: 1. 排队论的定义和基本概念 排队论是通过对服务对象的到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、繁忙期长短等)的统计规律,之后根据这些规律,来改善或重新组织被服务的对象,正确设计并有效运行各个服务系统,使其达到最佳的效益。 2. 排队论的应用场景 在游乐园中,游客的到达是相互独立的,服从泊松分布。非高峰期指 10 个娱乐项目的游客数量都没有超过每场容纳客数,此时游客并不会因为排队而浪费时间,在这种情况下只要挑选一条路程最短的路线,就可以达到游园体验最优。在高峰期,游客的到达是泊松分布的,需要对游客进行疏导,以避免等待时间过长。 3. 排队论模型的建立 排队论模型可以用泊松分布来描述游客的到达时间和服务时间。单位时间到达的人数服从参数为λ的泊松分布,则游客相继到达的间隔时间序列服从参数为λ的指数分布。排队系统中的时间包括游客的到达时间和服务时间,可以使用泊松分布来描述。 4. MATLAB 代码实现 使用 MATLAB 编程语言,可以实现排队论模型的求解。可以使用泊松分布函数来生成游客的到达时间和服务时间,然后使用排队论模型来计算平均等待时间、平均等待队长和服务利用率等性能指标。 5. 性能指标计算 可以使用以下公式计算性能指标: * 平均等待时间:Ws = λ / (μ - λ) * 平均等待队长:Lq = ρ / (1 - ρ) * 服务利用率:Ps = 1 - P0 = 1 - (1 - ρ)ˆs / (1 - ρ) 其中,λ是游客的到达率,μ是服务率,ρ是服务强度,s是项目的容纳人数。 6. 结果分析 通过计算性能指标,可以对游乐园的排队情况进行分析和优化。可以根据结果来确定最优的服务策略,以提高游客的体验和游乐园的效益。 7. MATLAB 代码示例 以下是一个简单的 MATLAB 代码示例,用于计算平均等待时间和平均等待队长: ```matlab % 参数设置 lambda = 10; % 游客的到达率 mu = 5; % 服务率 s = 10; % 项目的容纳人数 % 计算平均等待时间 Ws = lambda / (mu - lambda); % 计算平均等待队长 Lq = rho / (1 - rho); % 输出结果 fprintf('平均等待时间:%f 分钟\n', Ws); fprintf('平均等待队长:%f 人\n', Lq); ``` 这个示例代码仅供参考,实际实现中可能需要根据具体情况进行修改和扩展。
2025-06-03 13:41:18 513KB MATLAB
1
在嵌入式系统的世界里,S3C2410是一款经典的ARM9处理器,由Samsung公司设计,广泛应用于各种嵌入式设备,如PDA、打印机、数字相机和嵌入式控制系统等。本文将深入探讨S3C2410的开发流程,包括硬件平台的搭建、操作系统的选择与移植、驱动程序的编写以及应用程序的开发,同时也会提供相关的源代码供学习参考。 一、硬件平台搭建 S3C2410开发首先需要一个合适的硬件平台,通常包括核心板(Core Board)和底板(Base Board)。核心板上集成了S3C2410处理器和必要的电源管理单元,而底板则提供了各种外围接口,如LCD、USB、以太网、串口、SD卡等。开发者需要根据需求选择合适的开发板,并确保其能够正常供电和通信。 二、操作系统移植 嵌入式系统通常运行在实时操作系统(RTOS)或Linux之上。对于S3C2410,常见的操作系统有μC/OS-II、FreeRTOS、VxWorks以及Linux等。移植操作系统涉及内核配置、编译、链接,以及初始化脚本的编写。具体步骤包括:设置处理器模式、初始化内存管理、挂载根文件系统、启动用户空间进程等。 三、驱动程序开发 驱动程序是连接硬件和操作系统的桥梁。S3C2410的驱动开发主要包括GPIO、UART、I2C、SPI、ADC、PWM等接口的驱动。例如,为了控制LCD显示,需要编写LCD控制器驱动;为了进行网络通信,需要编写以太网控制器驱动。每个驱动都需要实现设备注册、初始化、读写操作等功能。 四、中断处理 中断是嵌入式系统中重要的实时响应机制。S3C2410处理器支持多种中断源,如外部中断、定时器中断等。开发者需要编写中断服务例程(ISR),并在中断向量表中设置正确的中断处理函数地址。 五、文件系统 嵌入式系统中的文件系统可以是FAT16/32、YAFFS、JFFS2等。开发者需要配置文件系统,挂载到合适的存储介质(如NAND Flash、SD卡),并实现读写操作。 六、应用程序开发 在操作系统和驱动程序准备好后,可以进行应用程序开发。这包括系统服务、图形界面、网络应用等。使用C或C++语言,配合嵌入式开发环境(如Eclipse、Code::Blocks)进行编程。 源代码是理解开发过程的关键。在“s3c2410完全开发流程及源代码”压缩包中,包含了上述各个环节的示例代码,从硬件初始化到驱动程序,再到应用程序,都提供了详细的注释和解释。通过研究这些代码,开发者可以深入理解S3C2410的工作原理,提高开发效率。 S3C2410的开发是一个综合性的工程,涵盖了硬件、软件、操作系统等多个层面。熟悉开发流程,掌握源代码,对于提升嵌入式系统的开发能力至关重要。通过不断实践和学习,开发者能够在S3C2410平台上构建出功能丰富、性能稳定的嵌入式系统。
2025-06-03 10:25:50 40.05MB
1
第七章 航天器、地面交通工具和轮船 §§§§ 7.07.07.07.0 概述 本章论述的是无轨运载工具,对如何设置航天器、地面交通工具和轮船的基本和图形属性 及其访问限制等工作进行了说明,同时也讲解了如何利用航天器、地面交通工具和轮船来获取 分析工作所需的信息。 本章内容 RouteRouteRouteRoute 7.1 AttitudeAttitudeAttitudeAttitude 7.2 外部姿态文件 7.2.1 图形属性:AttributesAttributesAttributesAttributes 7.3 图形属性:DisplayDisplayDisplayDisplay TimesTimesTimesTimes 7.4 航天器、地面交通工具和轮船的限制 7.5 高级的航天器的限制 7.6 §§§§ 7.17.17.17.1 RouteRouteRouteRoute 为了定义航天器、地面交通工具和轮船的路线,可以打开该对象的 BasicBasicBasicBasic PropertiesPropertiesPropertiesProperties窗口, 在 RouteRouteRouteRoute 域中,用户可以定义对象的轨迹,在面板的顶部,StartStartStartStart TimeTimeTimeTime 和 StopStopStopStop TimeTimeTimeTime 规定了航 天器、地面交通工具和轮船的运行时间,StartStartStartStart TimeTimeTimeTime 和 StopStopStopStop TimeTimeTimeTime 的默认值是情节中的起始时 间,StepStepStepStep SizeSizeSizeSize 域中则定义了输出星历点的时间间隔,其默认值是 60 秒。 用户可以选择 GreatGreatGreatGreat ArcArcArcArc PropagatorPropagatorPropagatorPropagator 或外部文件的路线信息,GreatGreatGreatGreat ArcArcArcArc PropagatorPropagatorPropagatorPropagator 定义了航天器、地面交通工具和轮船在给定海拔高度处沿地球表面运动的点,航途基准点描 绘了路线的经度、纬度、海拔高度和速度等信息。每个位于地球大圆平面上的圆弧路径都可以 用来连接航途基准点。 每个航途基准点都包括经度、纬度、海拔高度、速度和旋转半径等信息,为了定义航途基 准点,在位于WaypointWaypointWaypointWaypointTableTableTableTable之下和其对应的五个注释框内输入相应的数据,当输入航途基准 点的所有元素后,使用EditEditEditEdit ModeModeModeMode域中的InsertInsertInsertInsert PointPointPointPoint选项,就会在位于注释框之上的WaypoinWaypoinWaypoinWaypointttt TableTableTableTable中出现相应的点,每一排描述的都是航天器、地面交通工具和轮船的路径中的航途基准 点。
2025-06-03 10:14:43 2.05MB
1
在嵌入式系统开发中,S3C6410是一款广泛应用的ARM9处理器,它在各种设备上作为核心处理单元,例如工业控制、移动设备和消费电子产品等。Uart(通用异步接收发送器)是S3C6410中的一个重要外设接口,用于实现设备间的串行通信。本篇将详细介绍S3C6410裸机环境下的Uart编程,以及如何使用RVDS(RealView Development Suite)进行开发。 我们需要理解S3C6410的UART工作原理。UART是一种异步串行通信协议,通过数据位、停止位、奇偶校验位等构成一个完整的字符帧。在S3C6410中,UART控制器包含了多个寄存器,如波特率发生器、数据寄存器、状态寄存器等,用于配置和控制UART的工作模式。启动代码简洁是指在裸机环境中,不依赖任何操作系统,直接对硬件进行初始化和操作。 在裸机编程时,我们首先需要对UART进行初始化,包括设置波特率、数据位数、停止位数和奇偶校验方式。这通常通过写入相应的寄存器来完成。例如,S3C6410的UART控制器有UARTLCR(Line Control Register)寄存器用于设置数据格式,UARTFDR(Fractional Divisor Latch Register)用于精确设定波特率。初始化完成后,我们可以通过读写UART的THR(Transmit Holding Register)和RBR(Receive Buffer Register)进行数据的发送和接收。 RVDS是ARM公司提供的开发工具,支持ARM架构的多种处理器,包括S3C6410。使用RVDS进行S3C6410的UART编程,可以利用其强大的调试功能,例如断点、单步执行和实时查看寄存器状态,这对于裸机程序的调试至关重要。开发过程中,我们需要编写C或汇编语言代码,直接操作处理器的内存映射IO地址,访问UART的相关寄存器。 具体步骤如下: 1. 设置中断:在裸机环境中,通常需要手动开启UART的中断功能,以便在数据接收完毕或发送错误时得到通知。 2. 初始化UART:配置波特率、数据位数、停止位数和奇偶校验。 3. 发送数据:将待发送的数据写入UART的 THR寄存器。 4. 接收数据:通过轮询或中断方式检查RBR寄存器,读取接收到的数据。 5. 错误处理:检查UART的状态寄存器,处理可能的错误情况,如 framing error 或 overrun error。 在实际应用中,我们还需要考虑其他因素,如串口波特率的同步问题、多任务环境下的数据同步、流控等。对于更复杂的应用,还可以实现串口波特率动态调整、多UART设备管理等功能。 总结来说,"s3c6410之Uart裸机代码"主要涉及S3C6410处理器在无操作系统环境下对UART接口的直接编程,包括UART的初始化、数据传输以及错误处理。通过RVDS工具,开发者能够更方便地进行代码编写和调试,实现高效的串行通信功能。
2025-06-03 10:09:34 108KB s3c6410 uart rvds
1
嵌入式设备驱动。s5pc100_ts s3c2410_ts.c 代码分析。1.TS是字符设备。 2.TS驱动使用了平台 设备机制。 3.TS驱动使用了输入子系统。 4. S3C2410_TS.C这个驱动与ADC.C驱动之间有着C/S的关系。
2025-06-03 09:49:03 394KB TS,s5pc100
1
ASP.NET交通信息网上查询系统的设计与实现是一个典型的Web应用程序项目,它涵盖了计算机科学与技术、尤其是软件工程领域的多个重要知识点。这个系统旨在提供一个在线平台,让用户能够方便地查询交通信息,例如公交路线、航班时刻、火车时刻等。在本项目中,开发者使用了ASP.NET框架,这是一种由微软开发的用于构建动态网站、Web应用和Web服务的技术。 1. ASP.NET框架:ASP.NET是.NET Framework的一部分,提供了丰富的服务器控件、事件驱动模型以及自动状态管理,使得开发者可以快速构建功能强大的Web应用。在这个交通信息查询系统中,ASP.NET可能被用来创建用户界面、处理用户请求和生成动态内容。 2. C#编程语言:ASP.NET通常与C#语言结合使用,C#是一种面向对象的编程语言,拥有现代编程语言的特性,如垃圾回收、类型安全和泛型。开发者可能利用C#来编写后台逻辑,处理数据访问、业务规则和用户交互。 3. 数据库设计与管理:交通信息的存储和检索必然涉及到数据库技术。可能使用了SQL Server或MySQL等关系型数据库管理系统,通过ADO.NET或者Entity Framework等数据访问技术来实现数据库操作。 4. Web服务:为了获取实时的交通信息,系统可能还集成了一些Web服务,比如API接口,这些接口可以从外部交通信息提供商处获取数据,然后展示在用户界面上。 5. 用户界面设计:良好的用户体验对于查询系统至关重要。开发者可能使用HTML、CSS和JavaScript来构建用户友好的界面,并通过AJAX技术实现页面的部分刷新,提升交互性。 6. 安全性考虑:在设计和实现过程中,还需要考虑系统的安全性,包括防止SQL注入、XSS攻击等,这通常通过验证输入、使用参数化查询和编码输出等方式来实现。 7. 性能优化:为确保系统在高并发情况下仍能稳定运行,可能实施了缓存策略、数据库索引优化、负载均衡等性能优化措施。 8. 开发工具与版本控制:Visual Studio作为主要的开发环境,可能被用于代码编写、调试和部署。同时,Git或其他版本控制系统用于团队协作和代码管理。 9. 测试与调试:在项目开发过程中,单元测试、集成测试和系统测试都是必不可少的,以确保所有功能正常工作且没有错误。 10. 文档编写:开题报告、设计文档和论文的编写反映了整个开发过程,包括需求分析、系统架构设计、实现细节以及系统评估。 这个ASP.NET交通信息网上查询系统的设计与实现项目涉及了Web开发的多个核心技术和实践,对于计算机专业的学生来说,是一个很好的学习和实践平台。
2025-06-03 08:49:20 1.14MB java 计算机网络 毕业设计
1
在电子设计领域,FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,它允许用户根据需求自定义硬件电路。IIC(Inter-Integrated Circuit),也称为I²C,是飞利浦公司(现NXP半导体)推出的一种多主控、多从设备通信协议,常用于低速外设如EEPROM、传感器等的接口设计。本教程将重点讲解如何在FPGA中实现IIC协议,并基于Xilinx的Vivado工具进行开发。 IIC协议的核心在于其简单的总线结构,由两条线构成:SCL(Serial Clock)时钟线和SDA(Serial Data)数据线。协议规定了开始条件、停止条件、应答位、数据传输等规则。在FPGA实现IIC协议时,通常会用到以下关键组件: 1. **时钟发生器**:负责产生符合IIC协议的时钟信号,通常需要有特定的时序控制,如90度相位偏移。 2. **数据收发器**:接收来自SDA线的数据,并将其转化为内部逻辑可以处理的形式;同时,将内部逻辑产生的数据编码并发送到SDA线。 3. **地址识别模块**:IIC协议中,每个从设备都有一个7位的唯一地址,该模块用于识别目标设备地址。 4. **命令/数据序列器**:按照IIC协议规定的格式,序列化读写操作的命令字节和数据字节。 5. **应答检测**:检测从设备是否正确接收数据,通过读取SDA线在时钟下降沿的电平变化来判断。 6. **开始/停止条件生成器**:在适当的时间产生开始和停止条件,控制IIC通信的起始和结束。 Vivado是Xilinx提供的集成开发环境,集成了设计输入、仿真、综合、布局布线、编程等多个功能。在Vivado中实现IIC协议,你需要完成以下步骤: 1. **创建项目**:在Vivado中新建工程,选择适当的FPGA型号和工作频率。 2. **设计输入**:编写Verilog或VHDL代码,实现上述的IIC协议组件。 3. **仿真验证**:编写测试平台,模拟IIC总线和其他设备的行为,验证IIC模块的功能。 4. **综合与布局布线**:Vivado会自动将高级语言代码转换为逻辑门电路,并优化布局布线,以适应FPGA资源。 5. **下载与验证**:将编译后的配置文件下载到FPGA,通过实际连接的IIC设备测试其功能。 本教程提供的"eeprom_iic"工程包含了完整的代码和Vivado工程,可以直接运行。这有助于初学者快速理解和实践FPGA中的IIC通信。其中,EEPROM(Electrically Erasable Programmable Read-Only Memory)是一种非易失性存储器,常作为FPGA的配置存储或用于保存系统设置。在IIC协议下,可以读写EEPROM中的数据,实现数据的存储和检索。 通过这个FPGA IIC工程,你可以深入理解IIC通信协议,掌握如何在FPGA中实现这种通信机制,以及如何利用Vivado工具进行开发。这对于学习嵌入式系统、数字逻辑设计以及FPGA应用具有重要的实践价值。
2025-06-03 06:59:53 744B FPGA IIC
1