本课题为基于形态学的人体行为检测系统,可以识别卧躺,站立,蹲坐等几种姿势。根据圈定的矩形长宽比例,带有一个GUI可视化界面,程序简单易懂通俗。
1
基于四元数时空卷积神经网络的人体行为识别.pdf,传统卷积神经网络(CNN)只适用于灰度图像或彩色图像分通道的特征提取,忽视了通道间的空间依赖性,破坏了真实环境的颜色特征,从而影响人体行为识别的准确率。为了解决上述问题,提出一种基于四元数时空卷积神经网络(QST CNN)的人体行为识别方法。首先,采用码本算法预处理样本集所有图像,提取图像中人体运动的关键区域;然后将彩色图像的四元数矩阵形式作为网络的输入,并将CNN的空间卷积层扩展为四元数空间卷积层,将彩色图像的红、绿、蓝通道看作一个整体进行动作空间特征的提取,并在时间卷积层提取相邻帧的动态信息;最后,比较QST CNN、灰度单通道CNN(Gray CNN)和RGB 3通道CNN(3Channel CNN)3种方法的识别率。实验结果表明,所提方法优于其他流行方法,在Weizmann 和 UCF sports 数据集分别取得了85.34% 和80.2%的识别率。
2021-04-15 10:03:41 3.25MB 论文研究
1
课题为利用MATLAB的做差法,求出测试图和背景图的人体轮廓,根据人体的躺下,坐下,站立的时候最外接矩形的长宽来判断是什么姿态。带GUI界面。算法是差影法,理解起来很容易。
1
人体行为识别open-mmlab/mmskeleton中的kinetics-skeleton数据集,包含了kinetics_train_label.json,kinetics_val_label.json,还有生成之前的各个视频的json文件
2021-04-12 15:09:43 57KB 人体行为识别
1
主要讲述人体行为识别的基础流程,归纳了人体行为识别常用的数据集,总结了时域分割的发展现状和常用的方法,讲解了人体行为识别比较经典的方法,并归纳了人体行为识别最新、最热的深度学习方法。引入了动作分割,再结合行为识别,能够实现连续的人体行为识别,使得行为识别适用于实际场景,而不再是对经过人工剪辑好的单个视频进行识别,这在实际应用中意义重大。
1
课题为利用MATLAB的做差法,求出测试图和背景图的人体轮廓,根据人体的躺下,坐下,站立的时候最外接矩形的长宽来判断是什么姿态。带GUI界面。算法是差影法,理解起来很容易。
1
2021-03-19 16:04:24 919KB 人体行为识别
1
一、课题名称: 基于MATLAB的人体行为姿势识别系统 二、算法介绍 本课题采用差影法的方法进行人体姿势的识别。背景差影法的原理就是:我们先在路口固定一个摄像头,将这个摄像头与电脑相连。电脑可以把拍到的车流视频保存,然后人为截取车型图片作为背景差影法处理的对象。这里要注意的是,我们首先要拍摄一张没有任何移动物体或者干扰的背景图,这样我们在进行背景差影法做图像处理时就可以尽量得来最理想的结果。然后,我们把存在背景的车型图和没有任何干扰的背景图做减法,就可以很方便的得到我们需要进行识别的车的一个基本的轮廓图。这个轮廓图才是我们最终需要的用来进行车型识别的核心。图像差分就是对图像进行减法,我们在用背景差影法来是被车型图片的时候,必须要注意到背景随晴雨天、光强度这些随时可能发生变化的条件而该改变。 三、GUI界面设计
1
第1章 绪论 1.1 研究背景 对于目标实施追踪一直是人们追求的目标,以前只能通过人为的或者其他信息进行模糊的追踪。20世纪初,数字图像的处理走入大众的视野。在那个时候,人们在两地之间传输了一张照片,该照片经过数字压缩后,传输时间从200多小时缩短到不足三小时。这一过程虽然用到了图像处理方面的相关知识,但计算机却没有参与到整个过程中。但是,数字图像的处理离不开一定的储存空间与计算技巧的配合,与计算机发展技术成正比关系[1]。 从20世纪50年代开始,计算机的发展才向前迈进了一大步,人们在处理图形以及图像信息时已经有意识的将计算机的功能利用起来,增加工作的便利性[2]。 从图像处理技术的兴起到
1
主要讲述人体行为识别的基础流程,归纳了人体行为识别常用的数据集,总结了时域分割的发展现状和常用的方法,讲解了人体行为识别比较经典的方法,并归纳了人体行为识别最新、最热的深度学习方法。引入了动作分割,再结合行为识别,能够实现连续的人体行为识别,使得行为识别适用于实际场景,而不再是对经过人工剪辑好的单个视频进行识别,这在实际应用中意义重大。
1