对于许多研究人员和审查员来说,确定股票价格的专业性一直是一项麻烦的任务。 事实上,金融专家对股票价值预测的检查领域非常感兴趣。 对于体面而有用的投机,众多投机者对股市未来走势了如指掌。 强大而强大的股票市场预测框架可帮助交易商、投机者和专家提供重要数据,例如股票市场的未来走向。 这项工作提出了一种循环神经网络 (RNN) 和长短期记忆 (LSTM) 方法来处理预期的股市文件。
2023-04-04 14:57:56 154KB Artificial Neural Network
1
xgboost代码回归matlab 神经解码: 包含许多用于解码神经活动的方法的python软件包 该软件包包含经典解码方法(维纳滤波器,维纳级联,卡尔曼滤波器,支持向量回归)和现代机器学习方法(XGBoost,密集神经网络,递归神经网络,GRU,LSTM)的混合。 当前设计解码器来预测连续值的输出。 将来,我们将修改功能以允许分类。 该程序包随附一个,用于比较这些方法在多个数据集上的性能。 如果您在研究中使用我们的代码,请引用该手稿,我们将不胜感激。 依存关系 为了运行所有基于神经网络的解码器,您需要安装为了运行XGBoost解码器,您需要安装为了运行维纳滤波器,维纳级联或支持向量回归,您将需要。 入门 我们提供了jupyter笔记本,其中提供了有关如何使用解码器的详细示例。 文件“ Examples_kf_decoder”用于卡尔曼滤波器解码器,文件“ Examples_all_decoders”用于所有其他解码器。 在这里,我们提供一个使用LSTM解码器的基本示例。 对于此示例,我们假设我们已经加载了矩阵: “ neural_data”:大小为“时间段总数” x“神经元数量”的矩
2023-03-31 18:25:09 48.99MB 系统开源
1
神经关系推理(NRI) 用于交互系统的图神经网络 给定节点的时间序列数据,NRI模型会将未来的节点状态和节点之间的基础抵销关系预测为边缘。 这是Chainer中神经关系推理(NRI)的再现作品。 作者的原始实现可在此处找到: 。 请参阅本文的详细信息: 交互系统的神经关系推断。 Thomas Kipf *,Ethan Fetaya *,Kuan-Chieh Wang,Max Welling,Richard Zemel。 :平等贡献) 数据集 粒子物理模拟数据集 cd data python generate_dataset.py 训练 粒子物理模拟数据集 python train.py --gpu 0 可视化结果 python utils/visualize_results.py \ --args-file results/2019-01-22_10-20-25_0/args.
2023-03-28 18:42:31 1.09MB deep-learning chainer graph-neural-networks Python
1
手写字符的识别是任何模式识别问题中最重要的任务。 在本文中,我们讨论了一种使用神经网络和欧几里德距离度量来识别手写字符的方法。 首先神经网络经过一个学习阶段,然后网络被用来识别未知的手写字符。 对于不匹配的手写字符,使用欧氏距离度量来提高识别率。
2023-03-28 14:33:16 114KB character patterns neural
1
Recent developments in laser scanning technologies have provided innovative solutions for acquiring three-dimensional (3D) point clouds about road corridors and its environments. Unlike traditional field surveying, satellite imagery, and aerial photography, laser scanning systems offer unique solutions for collecting dense point clouds with millimeter accuracy and in a reasonable time. The data acquired by laser scanning systems empower modeling road geometry and delineating road design parameters such as slope, superelevation, and vertical and horizontal alignments. These geometric parameters have several geospatial applications such as road safety management. The purpose of this book is to promote the core understanding of suitable geospatial tools and techniques for modeling of road traffic accidents by the state-of-the-art artificial intelligence (AI) approaches such as neural networks (NNs) and deep learning (DL) using traffic information and road geometry delineated from laser scanning data. Data collection and management in databases play a major role in modeling and developing predictive tools. Therefore, the first two chapters of this book introduce laser scanning technology with creative explanation and graphical illustrations and review the recent methods of extracting geometric road parameters. The third and fourth chapters present an optimization of support vector machine and ensemble tree methods as well as novel hierarchical object-based methods for extracting road geometry from laser scanning point clouds. Information about historical traffic accidents and their circumstances, traffic (volume, type of vehicles), road features (grade, superelevation, curve radius, lane width, speed limit, etc.) pertains to what is observed to exist on road segments or road intersections. Soft computing models such as neural networks are advanced modeling methods that can be related to traffic and road features to the historical accidents and generates regression equations that can be used in various phases of road safety management cycle. The regression equations produced by NN can identify unsafe road segments, estimate how much safety has changed following a change in design, and quantify the effects of road geometric features and traffic information on road safety. This book aims to help graduate students, professionals, decision makers, and road planners in developing better traffic accident prediction models using advanced neural networks.
2023-03-22 16:49:12 8.29MB neural networks deep learning
1
pytorch图注意网络 这是Veličković等人提出的图注意力网络(GAT)模型的火炬实施。 (2017, )。 回购协议最初是从分叉的。 有关GAT(Tensorflow)的官方存储库,请访问 。 因此,如果您在研究中利用pyGAT模型,请引用以下内容: @article{ velickovic2018graph, title="{Graph Attention Networks}", author={Veli{\v{c}}kovi{\'{c}}, Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adriana and Li{\`{o}}, Pietro and Bengio, Yoshua}, journal={International Conference on Learning
1
用于学习分子图的分层消息间传递 这是用于学习分子图的分层消息间传递的 PyTorch 实现,如我们的论文中所述: Matthias Fey、Jan-Gin Yuen、Frank Weichert:(GRL+ 2020) 要求 (>=1.4.0) (>=1.5.0) (>=1.1.0) 实验 可以通过以下方式运行实验: $ python train_zinc_subset.py $ python train_zinc_full.py $ python train_hiv.py $ python train_muv.py $ python train_tox21.py $ python train_ogbhiv.py $ python train_ogbpcba.py 引用 如果您在自己的工作中使用此代码,请引用: @inproceedings{Fey/etal/2020,
1
基于深度学习的生物信息学聚类方法 ”期刊的“”中发表的论文“基于深度学习的生物信息学聚类方法”的代码和补充材料。 此仓库将定期更新。 特别是,将添加更完整的Jupyter笔记本。 在本文中,我们回顾了基于深度学习的聚类分析方法,包括网络训练,表示学习,参数优化和制定聚类质量指标。 我们还讨论了在不同的场景(例如生物成像,基因表达聚类)中,基于不同的自动编码器体系结构(例如,香草,变异,LSTM和卷积)的表示学习如何比基于ML的方法(例如,PCA)更有效。 ,以及将生物医学文本聚类。 基于深度学习的无监督/聚类方法,链接到论文和代码 我们提供了基于深度学习的无监督/聚类方法,论文链接和代码的列表。 此外,还将列出提出新方法和论文的文章。 敬请期待! 标题 文章 会议/期刊 代码 卷积自动编码器(DCEC)的深度聚类 ICONIP'2017 用于一致性培训(UDA)的无监督数据增强 Arx
1
仅东南亚地区就有大约 80% 的人口将大米视为主要食物。 由于大多数国家在大米生产方面实现自给自足,消费者更关注质量更好的大米。 人们分析市场上大米的质量和等级是一项非常繁琐的工作。 米粒的质量检验由人工检验员进行人工目检,这既不客观也不有效,因为很多时候由于检验员缺乏经验或人为错误,结果可能不可信。 因此需要一种大米质量自动分级系统,它可以消除人工质量分级过程的缺点。 在本文中,分析了图像处理技术以及机器和计算机视觉,以回顾自动质量分级过程的最新技术。 为了审查目的,考虑了各种程序和方法,以根据不同的参数分析米粒的质量。 本文重点介绍了最近为使用图像处理、机器视觉、计算机视觉和其他技术开发自动化大米质量分级系统而进行的研究。
2023-03-12 12:22:53 256KB image processing neural
1
循环神经网络 神经网络的实现
2023-03-08 23:30:11 58KB Java
1