对发光二极管(LED)光源进行均匀照明配光时,内曲面为半球面等特定面型的透镜无法满足对照明均匀度的要求,同时光源适用性也不广泛,提出了一种可按需要建立并修改内曲面的双自由曲面透镜设计。通过分析LED 光源数据,设置拟合点,构建三次样条曲线作为透镜内曲面母线,再运用传统的边缘光线理论、光通量网格划分及Snell 定律等计算外自由曲面母线,旋转母线得到透镜模型,最后对透镜进行优化,提高照明均匀度。将透镜模型在TracePro 中进行模拟,结果表明在距高比为4 时,基于单个朗伯光源及非类朗伯光源下设计出的透镜实现的照明均匀度分别为90%和85%,光能利用率分别约为86%和80%。说明此设计适用于不同光源,还可用在近场均匀照明等方面。
2023-01-16 15:58:21 5.83MB 光学设计 均匀照明 自由曲面 LED
1
激光扩束变倍系统,工作波长 0.6328um,孔径 2mm,发散角 0.17°,变倍范围2×~10× 建议在操作数中去掉长度限制后重新优化,限制长度不利于小倍率系统
2022-12-25 15:27:13 53KB 光学设计 ZEMAX 激光扩束
1
折射式望远物镜,焦距 200mm,D/f’=1/8,工作波长为可见光,半视场 4°
2022-12-25 13:28:06 24KB 光学设计 ZEMAX 望远物镜
1
zemax2019软件(中文最新)
2022-12-17 19:46:20 980.19MB zemax 光学设计 软件
1
光学设计软件zemax2005,应用较多
2022-12-09 10:27:00 11.66MB zemax
1
我这有TracePro的视频,PPT讲解,包括软件教程中英文版还有一些教程的训练过程。光学有关设计原理
2022-12-09 09:03:38 342.61MB 课程 原理
1
基于几何光学、能量守恒定律及菲涅耳定律等相关理论,提出了一种双自由曲面半导体发光二极管(LED)准直透镜的光学设计方法,并给出了构建准直透镜模型详细的算法设计。自由曲面是一种关于中心轴旋转对称的曲面,该曲面的二维轮廓在非均匀有理B样条曲线的方法理论基础上,采用ProE软件搭建而成。通过蒙特卡罗光线追迹模拟发现,相比传统的单自由曲面准直透镜,双自由曲面准直透镜不仅提高了照度均匀性,而且在能量利用率上也有显著的提高。研究结果表明,采用双自由曲面将大大提升准直透镜的设计空间,改善LED透镜的光学性能。
2022-12-05 13:33:58 4.01MB 光学设计 双自由曲 算法设计 蒙特卡罗
1
针对数字可调光源输出能量较低的问题,提出一种改进型Offner凸面光栅光谱辐射定标光源光学系统的设计方法。基于光线追迹原理,理论推导Offner型光谱成像结构狭缝和像散的关系,利用双柱面透镜对Offner型光谱成像系统大狭缝下的残余像散进行补偿。使用所提方法设计了光谱范围为500~800 nm,狭缝长度为0.4 mm的传统Offner光谱成像系统和狭缝长度为8 mm改进型Offner光谱成像系统。结果表明:改进型Offner光谱成像系统具有良好的成像质量,全视场点列图方均根(RMS)半径小于8.1 μm;系统沿Y方向RMS半径小于6.7 μm,在一个像元尺寸内;谱线弯曲为单像元尺寸6.2%、色畸变为单像元尺寸5.8%,消除了谱线重叠和谱线偏移现象。设计方法对提高遥感仪器的光谱辐射定标精度具有一定的研究意义和工程价值。
2022-11-30 17:57:14 8.22MB 光学设计 光谱辐射 Offner光 消像散
1
针对远程红外目标探测的需求,为提高光学系统在复杂环境下的探测能力,设计了制冷式红外双波段共光路折衍混合摄远物镜。摄远物镜的工作波段为红外中波(3~5 μm)及红外长波(8~12 μm),采用透射式共光路结构,由物镜和中继镜组成。摄远物镜焦距为-200 mm,F数为2.8,全视场角为3.2°。探测器选用2/3 inch(1 inch=25.4 mm)的HgCdTe红外中波焦平面阵列,分辨率为320 pixel×256 pixel,像元尺寸为30 μm。该摄远物镜像质优良,在截止频率为17 lp/mm时,红外中波各视场的调制传递函数(MTF)值超过0.5,红外长波的MTF值超过0.3;各视场点列图均方根半径均远小于艾里斑半径;实现了100%冷光阑效率。该红外摄远物镜可用于坦克红外观瞄等系统。
2022-11-27 22:15:45 2.62MB 光学设计 摄远物镜 红外双波 共光路
1
光纤耦合是半导体激光器集成光源进一步改善输出光束质量和远距离传输的重要手段。然而,由于半导体激光器单管体积和散热的限制,合成后激光光源的输出光束光参量积仍较大,不利于与单根多模光纤的耦合;直接与光纤束耦合又受到光纤束填充比的限制。针对多个半导体激光器单管集成的光源,采用倒置前端光学放大系统,对合成光束直径进行压缩;并采用六方排列的微透镜阵列作为耦合元件,使其光瞳成像在光纤端面,从而实现微透镜与光纤的一对一耦合,得到理论无损耗的高效光纤耦合系统。为了改善光场边缘像差影响,采用空心光管进一步匀化光场分布,且减小了边缘光线的发散角,提高了边缘光线的成像质量,优化后的系统耦合效率达98%。这一系统利用微透镜阵列将光束分束、成像,克服了集成光源输出光束光参量积较大不易与单根光纤耦合的缺点;通过使微透镜的入瞳成像在光纤端面,且光纤束的排列与微透镜阵列排列相同,提高了光束与光纤束的耦合效率。
1