在现代控制系统中,数据采集系统就像控制系统的“眼睛”和“耳朵”一样,成为控制系统不可或缺的重要部分。它是各种控制系统获取信息的一种重要途径。本采集系统采用ADI公司生产的12位模数转换器AD7862,它是一款高速、低功耗、双核12位模数转换器。能够满足系统对采样精度和采样速度的要求。控制器件采用dsPIC30F6010A数字信号控制芯片,它是Microchip公司生产的高性能16位数字信号控制器,内核包含一个DSP引擎,从而能够显着增强系统的运算和吞吐能力。   在某些数据采集系统中,不仅对数据采集系统的精度和实时性提出要求,而且要求其具有数据存储功能,为了实现存储功能,本系统使用SD卡。SD
1
设计了一个以CY7C68013A为接口芯片的并口转USB口的数据采集系统,讨论了CY7C68013A的性能及传输方式,给出了该系统的硬件设计方案,设计实现了USB2.0数据传输模块,阐述了系统的硬件设计、固件程序和驱动程序的设计等。通过USB数据传输模块实现了采集系统与计算机之间的数据高速传输,满足了旧测试系统改造的要求,对传统智能仪器接口的设计和改造有一定的借鉴意义。
1
研华“e 时代自动化专家之路”系列丛书系列之《数据采集系统 应用与编程》,全文共分六章:第一章,数据采集基本原理;第二章,研华数据采集卡应用;第三章,数据采集卡VC 编程详解;第四章,数据采集控制卡ACTIVEX 控件编程;第五章,数据采集卡LABVIEW 编程;第六章 研华数据采集卡例程使用
2023-02-02 15:51:08 6.68MB 研华 采集卡 编程
1
基于DSP的高速数据采集系统设计方案   摘要:设计了一种高速数据采集系统,采用TMS320F2812 型号的DSP 和MAX1308 型号的AD 转换器完成对8 路同步信号的采集,通过USB 接口芯片CH372 将采集到的数据实时传输给计算机,计算机对整个数据采集过程进行控制并显示。该系统对单路的数据采集,可以实现800kSPS 的实时数据传输,8 路同步采集可以实现400kSPS 的实时数据传输。   引言 近年来,高速数字信号处理器(DSP)已越来越广泛地用于各个领域,例如:通信、语音处理、图像处理、模式识别及工业控制等方面,并且日益显示出巨大的优越性。数字信号处理器是利用专门
1
给出了采用8051单片机为核心来实现多路数据采集与通信控制的设计方法。该方法将8路被测电压通过通用ADC0809模数转换来实现对采集到的数据进行模拟量到数字量的转换,然后由单片机对数据进行处理,再将数据通过串行口传输到PC机上,同时采用MAX232接口芯片来实现MCU与PC机间的电平匹配,最后由PC机完成数据的接收和显示。
2023-01-15 21:12:19 265KB 数据转换
1
0 引 言   本系统以AD7892SQ和CPLD(复杂可编程逻辑器件)为设计了一个多路信号采集电路,包括模拟多路复用、集成放大、A/D转换,CPLD控制等。采用硬件描述语言Verilog HDL编程,通过采用CPLD使数据采集的实时性得到提高。 1 硬件设计   针对多路信号的采集,本系统采用4/8通道ADG508A模拟多路复用器对检测的信号进行选择,CMOS高速放大器LF156对选中的信号进行放大,AD7892SQ实现信号的A/D转换,CPLD完成控制功能。电路如图1所示。   AD7892SQ是美国AD公司生产的LC2MOS型单电源12位A/D转换器,可并行或串行输出。  
2023-01-06 14:33:56 229KB 基于AD7892SQ和CPLD的数据采集系统
1
基于单片机的温度数据采集系统实验报告.doc
1
1.LabVIEW分析   LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显着区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。   LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其子程序(子VI)的结果、单步执行等等,便于程序的调试。采用数据流编程方式,程序框图中节点之间的数据流向决定了VI及函数的执行顺序。     它主要的方便就是,一个硬件的情况下,可以通过改变软件,就可以实现不同的仪器仪表的功能
1
本项目是一个电池供电型无线风速和风向数据采集系统,集成一个RF ISM频段收发器,用来传输从无源风速计测得的风速和风向。电路通过采用12位模数转换器(ADC)和唤醒定时器分别用来获取风向和风速。在休眠模式下,ADuCRF101标称功耗为1.9 A,可实现较长的电池使用时间。在该模式下工作时,采用单个CR2032锂离子电池可持续工作1至2年。 无线风速和风向数据采集系统框图: 典型无源风速计的风速部分由舌簧开关组成,此开关可随磁体在其上通过而进行开关动作。磁体附着在风速计风扇轴承上;因此,随着风吹动风扇,磁体周期性地在开关上移动,每次路过开关就对其进行切换。开关连接GND引脚和印刷电路板(PCB)的P0.7。风扇每转一次就完成一次开关操作,在P0.7上产生一个脉冲,用作中断信号。本例中,P0.7分配为IRQ3。两次脉冲之间的时间用来计算风速。使用了32位唤醒定时器。该定时器采用ADuCRF101的内部32 kHzLFOSC时钟以及数值为1的预分频器。使用唤醒定时器的主要原因是它在休眠模式下处于活跃状态,而通用定时器却不会处于活跃状态。因此,哪怕器件处于低功耗休眠模式,中断时序也是连续的。 无源风速计的风向部分通常由电位计连接风向标组成。若风向标的方向发生改变,则电位计数值也会变化。电位计的游标连接ADC1引脚,电位计的其余两个接线分别接至低压1.8 V LDO LVDD1引脚和P3.4引脚。连接P3.4引脚而非直接接地可让P3.4选择(通过内部开关)接地或完全断开。ADC转换之后,将P3.4与地断开连接可降低功耗。由软件驱动决定P3.4接地还是断开接地连接。 无线数据采集软件流程图: 附件内容截图:
2022-12-09 10:20:29 1.35MB 模数转换器 风速计 电路方案
1
1) 8路数据采集功能 通过调节可变电阻实现0-5V的电压输出作为8路输入信号使用,每路信号用2位LED显示采集的结果。报警:任意一路超过某一门限(可自己设定)时,发出报警(声音+灯闪烁,并通过灯指示是哪一路报警),同时停止采集。 2) 计数功能 利用计数功能键,实现每按一次按键,LED显示加1,从0-99计数。 3) 秒表功能 只用一个键控制。按下一个按键后时钟启动,从零开始计时,计时间隔0.01秒,再按一次后停止。再按一次后清零。如此循环 (4)时间显示
2022-12-06 19:35:02 104KB c51 课程设计 AD LCD
1