基于MATLAB车牌字符分割的算法研究.pdf
2024-04-12 13:38:40 2.34MB
1
实现lzss压缩/解压算法 跨平台,可移植到单片机及ARM上
2024-04-11 15:33:35 7KB lzss
1
1.本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。 2.项目运行环境包括:Python 环境、Anaconda环境。 3.项目包括3个模块:数据预处理、模型构建、模型训练及保存。项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像;模型构建包括VGG模型和GoogLeNet模型简化版深度学习模型,MiniGoogLeNet由Inception模块、Downsample模块和卷积模块组成,卷积模块包括卷积层、激活函数和批量归一化;通过随机旋转等方法进行数据增强,选用Adam算法作为优化算法,随着迭代的次数增加降低学习速率,经过尝试,速率设为0.001时效果最好。 4.项目博客:https://blog.csdn.net/qq_31136513/article/details/135080491
2024-04-11 12:51:19 32.13MB 深度学习 python 图像识别 目标检测
1
学习研究轨迹停留优化调用MeanShift算法是一项重要的研究工作,它涉及到计算机科学、人工智能、数据挖掘等多个领域。该算法可以帮助我们更好地理解人类行为模式和社会现象,同时也可以为我们提供有用的决策支持。 在学习研究轨迹停留优化调用MeanShift算法的过程中,我们首先需要了解什么是轨迹停留。轨迹停留是指在某个定位点上停留一段时间的行为,这个定位点可以是一个商场、一个旅游景点,甚至可以是一个公共交通站点。在现实生活中,我们经常会发现一些人在某个位置停留的时间比其他人长,这些人可能会在该位置进行某种活动,如购物、休息、聊天等。通过分析这些停留点,我们可以了解到人们的行为模式和消费习惯,帮助优化服务和产品。 然而,由于轨迹数据量大,数据维度高,数据之间的相关性复杂,传统的数据分析方法往往难以有效处理这些数据。在这种情况下,MeanShift算法成为了一种流行的数据聚类方法。该算法基于密度估计的方法,通过不断更新数据点的密度中心来实现数据聚类。在聚类过程中,该算法能够自适应地确定聚类中心的数量和位置,从而避免了手动调整聚类中心的繁琐过程。使用MeanShift算法进行分析。
2024-04-11 12:12:35 4KB
1
多配送中心选址问题可以描述为:某个地区内有若干个需求点,已知各个需求点的需求量,现欲在该区域内若干个配送中心备选点中选择一部分,建立配送中心,以满足该地区需求点的需求,并使得包括固定费用、运输费用以及存储费用在内的总费用最少。 为了简化问题,我们先做出如下假设: 1)仅在给定的配送中心备选点中选择一部分建立配送中心。 2)运输费用与运量成正比。 3)配送中心容量足够大,可以满足所有需求。 4)各需求点的需求量已知。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其冷却。加温时,固体内部粒子随温升变为无序状,内能增大;而冷却时粒子渐趋有序,在每个温度上都达到平衡态,最后在常温时达到基态,内能减为最小。
2024-04-11 10:43:43 30KB matlab 模拟退火算法 中心选址问题
1
基于K-means算法的光伏曲线聚类研究 关键词:k-means 光伏聚类 聚类 参考文档:《基于改进 K-means 聚类的风光发电场景划分》仅部分参考 仿真平台:MATLAB平台 主要内容:代码主要做的是一个光伏曲线聚类的模型,采用的是较为基础的K-means算法,经过matlab求解后,代码可以直接输出光伏原始数据集、聚类后的数据集,各类曲线的数量以及各类曲线的概率,数据显示结果非常清晰,而且求解的效果更好,店主已经对代码进行了深入的加工和处理,出图效果非常好 标题:改进 K-means 算法在光伏曲线聚类研究中的应用 关键词:K-means 算法、光伏聚类、数据分析、MATLAB平台 参考文档:《基于改进 K-means 聚类的风光发电场景划分》(部分参考) 简介: 本研究聚焦于光伏曲线聚类的模型,采用了改进后的 K-means 算法,以提高聚类的准确性。我们选择了MATLAB平台作为仿真平台,并基于该平台进行实验和数据处理。通过运用改进后的算法,我们的代码能直接输出光伏原始数据集和聚类后的数据集,同时提供各类曲线的数量和概率。结果显示数据清晰可见,求解效果更佳
2024-04-11 09:40:42 1.26MB kmeans matlab 聚类
1
MATLAB代码:基于改进粒子群算法的含电动汽车参与园区综合能源优化调度 关键词:电动汽车 改进粒子群 综合能源 优化调度 园区 参考文档:《含电动汽车的区域综合能源系统优化调度研究》第3章:复现 仿真平台:MATLAB 主要内容:代码主要做的是一个含有系统能源运营商、分布式光伏用户、电动汽车充电代理商的园区综合能源系统,分析了三种市场交易主体的属性以及市场交易机制,建立了三方市场主体各自的综合能量管理优化策略,采用改进的粒子群算法对模型实现了求解,算例选取了某商务型办公园区的冬季典型场景。 此方法更加具有创新性,代码非常精品,注释保姆级
2024-04-10 18:40:48 276KB matlab
1
麻雀搜索算法(Sparrow Search Algorithm, SSA)是一种新型的群智能优化算法,在2020年提出,主要是受麻雀的觅食行为和反捕食行为的启发。在麻雀觅食的过程中,分为发现者(探索者)和加入者(追随者),发现者在种群中负责寻找食物并为整个麻雀种群提供觅食区域和方向,而加入者则是利用发现者来获取食物。为了获得食物,麻雀通常可以采用发现者和加入者这两种行为策略进行觅食。种群中的个体会监视群体中其它个体的行为,并且该种群中的攻击者会与高摄取量的同伴争夺食物资源,以提高自己的捕食率。此外,当麻雀种群意识到危险时会做出反捕食行为。
2024-04-10 16:51:04 2KB matlab
1
matlab实数编码代码快照压缩成像(PnP-SCI)的即插即用算法 这个软件库包含了纸张的MATLAB代码插件和播放算法大型快照压缩成像在计算机视觉IEEE / CVF会议和模式识别(CVPR)2020(口服)的,和。 图1.使用提议的PnP-SCI算法以深去噪器作为图像/视频先验,重构为大型Football视频(3840×1644×48) ,表示为PnP-FFDNet(右下)。 为了进行比较,左下和右上分别显示了地面真实情况和使用GAP-TV(ICIP'16)的结果。 所拍摄的图像(左上角)尺寸为UHD(3840×1644),并从快照测量中恢复了48帧。 Football视频来自。 快照压缩成像(SCI) 快照压缩成像(SCI)提出了一个问题,我们可以将多维视觉信息编码为低维采样。 因此,如图2所示,SCI指的是对快照中的三维或二维数据使用不同的掩码(或编码Kong径)进行编码,如图2所示。典型的应用是高速成像(在时间上具有变体蒙版),高光谱成像(具有光谱变体蒙版),光场成像(具有角变体蒙版)以及同时进行多维成像和传感。 图2.视频SCI的感测过程(左)和使用建议的PnP-FFDN
2024-04-10 15:54:22 192.11MB 系统开源
1
基于神经网络的退化图像复原算法是一种通过训练深度学习模型来恢复退化图像质量的方法。这种算法利用神经网络的强大表示学习能力,能够学习从模糊、噪声等退化图像中提取出干净、清晰的原始图像信息。
2024-04-10 12:00:17 110KB 神经网络 MATLAB 图像复原
1