半监督支持向量机概述
2022-03-14 10:59:33 449KB 研究论文
1
提出了一种基于数字信号处理器(DSP)和支持向量机(SVM)的风电齿轮箱故障诊断的方法。分解和提取了Libsvm代码移植于DSP芯片TMS320F28335,实现了支持向量机并应用于风电齿轮箱故障诊断。该方法较好地解决了小样本学习问题,同时又具有低功耗、低成本、通用性强和可实时控制的优点。实验结果表明,在保证较高预测正确率、运行速度较快和较大数据量读取前提下,Libsvm能够正确运行于芯片,有效应用于齿轮箱故障诊断。
1
SVM实现的C代码 程序用C写成,可再matlab中调用
2022-03-12 22:01:26 2.56MB 支持向量机
1
在fashion_mnist数据集上进行SVM的分类及调参
2022-03-12 21:57:30 153KB fashionmnist 支持向量机
基于DSP的图象处理资料---基于DSP的快速目标识别与跟踪技术研究 支持向量机
1
SVM骨灰级书籍。深度剖析SVM算法原理,中文版
2022-03-12 10:09:23 49.15MB 支持向量机 SVM
1
对支持向量机和神经网络算法的理论研究,这样可以更好的有助于理解。
2022-03-11 23:20:59 960KB 支持向量机、神经网络
1
支持向量机matlab程序实现、支持向量机matlab程序实现、
2022-03-11 00:40:15 3KB matlab
1
1.3支持向量机国内外研究现状 SVM算法一经提出,就得到国内外学者的高度关注。学术界普遍认为它是继神经 网络之后一个新的研究方向。在短短的几年里,取得了一系列令人瞩目的研究成果。其 理论和应用在横向和纵向上都有发展。 理论上的发展主要如下: (1)核函数的构造,如核主成分分析n0’111等。基于各个不同的应用领域,可以构造不 同的核函数,能够或多或少的引入领域知识。现在核函数广泛应用的类型有:多项式逼 近m1、贝叶斯分类器m3、径向机函数‘“Ⅲ1、多层感知器‘蚓等。 (2)SVM从两类问题向多类问题的推广Ⅱ"。以W色Stonn81在1998年提出的多类算法 为代表,在经典SVM理论的基础上,直接在目标函数上进行改进,重新构造多值分类 模型,建立K分类SVM。这类算法选择的目标函数十分复杂,变量数目过多,计算复 杂度也非常高,实现困难,所以只在小型问题的求解中才能使用。 (3)与目前其他机器学习方法的融合。如:最小二乘支持向量机n蚴1,这种方法是 在1999年被提出的,经过这几年的发展,已经应用到很多相关的领域。研究的问题已 经推广到:对于大规模数据集的处理;处理数据的鲁棒性;参数调节和选择问题等。 (4)与数据预处理(样本的重要度,属性的重要度,特征选择等方面)方法的结合, 将数据中脱离领域知识的信息即数据本身的性质融入SVM的算法中从而产生新的算 法。如粗糙集与SVM的结合口朝,利用粗糙集理论对数据的属性进行约简能在某种程度 上减少SVM求解计算量;再如分级聚类的SⅥⅥ瞰1,基于分级聚类和决策树思想构建多 类SVM,使用分级聚类的方法可以先把刀一1个距离较近的类别结合起来,暂时看作一 类,把剩下的一类作为单独的一类,分类后的下一步不再考虑这单独的一类,而只研究 所合并的刀一1类,再依次下去。 (5)SVM训练算法的探索,以提高SVM的计算速度,以便于处理大规模问题。、却11ik 在1995年提出了一种称为“chuI】舾ng’’的块算法乜引,即如果删除矩中对应La莎蛆ge乘 数为0的行和列,将不会影响最终结果。Osulla提出了一种分解算法啪搿1,应用于人脸 识别领域。Joacllil:IlS在1998年将Osulla提出的分解策略推广到解决大型SVM学习的算 法‘鹦’别中;P1a位于1998年提出了序贯最小优化‘剐(Sequential Minimal 0Iptimization)算法, 每次的工作集中只有两个样本。 (6)SVM的参数选择问题。参数选择是机器学习算法中一个重要的问题,SVM的 性能依赖于其核参数及惩罚系数的选取。最常用的方法是经验凑试法和格点法(吼d Method)旧u,但这两种方法都是基于大量实验的,获得的参数通常也不是最优的;Chapelle 提出用梯度下降(Gradient Descer斌GD)法口列来完成SVM参数选择,Chen呦1和Zhengml 则采用不同的适应度函数,提出了两种基于遗传算法(Genetic舢gorithm,GA)的SVM参 数选择方法。 (7)SVM的模型选择标准。SVM的应用之所以不像神经网络那么广泛,除了其对大 样本问题求解速度慢以外,还有一个关键原因在于SVM的模型选择问题没有解决好。
2022-03-09 17:06:21 3.15MB 支持向量机 回归算法
1
matlab中rbf源代码支持向量机 在该存储库中,提供了一个MATLAB工具箱,以针对不平衡和多类型分类问题训练和测试基于支持向量机(SVM)的模型。 附加了两个分类技巧,即granularization和binary-tree以形成GBT-SVM模型。 有关该模型的详细信息,请参考我的。 工具箱的构造 文件夹中的代码和脚本可用于构建粒度SVM(GSVM)模型,该模型能够形成树结构分类器。 我在这里列出了名称和相应的注释。 方法 评论 getGranule 通过将主要类别拆分为子集或颗粒来生成平衡的数据集。 myCrossSVM 通过交叉验证和网格化训练SVM模型,内核是可选的。 myGSVM预测 使用训练有素的模型对新样品进行分类。 获取颗粒 为了获得平衡的数据集,您可以使用getGranule作为 >>> [DataGranules] = getGranule(data,label) 输出DataGranules是一个结构,形成为 数据粒度 MajIdx :主要类别的标签 MinIdx :次要类别的标签 GraNum :颗粒数 MinData :次要样本的数据和标签 MajDat
2022-03-09 13:09:17 1.51MB 系统开源
1