针对图像去噪过程中存在边缘保持与噪声抑制之间的矛盾,提出了一种基于变指数的片相似性扩散图像降噪算法。算法基于变指数的自适应降噪模型,引入片相似性的思想,构造出新的边缘检测算子和扩散系数函数。传统的各项异性扩散图像降噪算法利用单个像素点的灰度相似性(或梯度信息)检测边缘,不能很好地保持图像的弱边缘和纹理信息。而所提算法利用邻域像素的灰度相似性,可以在滤除图像噪声的同时,保持更多的细节信息。仿真结果表明,与其他传统的基于偏微分方程(PDE)的图像降噪算法相比,该算法将信噪比(SNR)和峰值信噪比(PSNR)提高至16.602480 dB和31.284672 dB,具有良好的抗噪性;同时视觉效果较好,保持了更多的弱边缘和纹理等细节特征,在噪声抑制与边缘保持之间取得了较好的权衡。
1