为了进一步提高量子行为粒子群优化(QPSO) 算法的全局收敛性能, 有效改善算法中存在的粒子早熟问题,提出一种基于完全学习策略的改进QPSO 算法(CLQPSO). 该学习策略改变了QPSO 中局部吸引子的更新方式, 充分利用了种群的社会信息. 采用8 个测试函数对算法性能进行比较分析. 实验结果表明, 所提出的改进算法不仅收敛速度快, 而且全局收敛能力好, 收敛精度优于PSO 算法和QPSO 算法.