离散滑模控制可直接仿真运行
2023-03-21 00:37:28 26KB 离散滑模控制
1
Stewart平台广泛应用于运动模拟器、光学、精密定位等领域,然而由于复杂的多元非线性使得位姿正解难以准确得到.针对Stewart平台的位姿正解问题,常规的方法比如迭代法和数值法存在初始值难以选取、计算速度较慢等问题,提出了基于Elman神经网络的位姿正解方法.首先建立Stewart平台支腿长度与平台位姿的运动学模型,然后利用Elman神经网络来实现位姿正解的求解并实验验证.该方法具有良好的动态特性,精度高,能够快速准确的实现Stewart平台位姿正解的求解.实验证明了该方法的有效性.
2023-03-21 00:37:26 1.49MB Stewart平台 位姿正解 Elman神经网络
1
先决条件: nltk(TweetTokenizer) 凯拉斯张量流麻木科学的gensim(如果您使用的是word2vec) itertools 克隆存储库: git clone :AniSkywalker / SarcasmDetection.git cd SarcasmDetection / src / 您可以在以下链接中找到经过训练的模型文件 在/ resource / text_model / weights /中下载经过训练的模型 运行脚本: python sarcasm_detection_model_CNN_LSTM_DNN.py 如果要使用自己的数据训练模型,可以将“训练,开发
2023-03-20 21:21:46 3.17MB twitter keras cnn lstm
1
Matlab神经网络工具箱应用简介.pdf
2023-03-20 18:35:16 265KB Matlab 神经网络 工具箱
1
模式识别高分课程设计,利用BP神经网络对0-9的手写数字图像数据进行分类。 图像数据存放在Img的文件夹中,0-9每个数字各有55个样本,共550个图像样本数据。文件中的all_data.mat是为了对这些图像数据全部提取到MATLAB的工作区中,以便于MATLAB对数据的处理。载入后是一个4维的900×1200×10×55的阵列,900×1200为每一张图像的尺寸/分辨率,10指的是为0-9的10类图像,55是每一类的样本数目; 代码中有详细注释,整个过程分为:①载入图像数据;②裁剪图像的无效信息;③特征选择和提取;④特征预处理;⑤划分数据集;⑥网络训练;⑦网络测试;⑧用户验证过程 网络经多次测试后对训练样本和测试样本的分类准确率均在95%以上,MATLAB自建BP神经网络,代码每个过程都有注释详解,有利于读者对BP神经网络有更好的把握。 在用户验证过程中,向客户提供验证端口,读者在读懂代码的基础上,可以继续在此做一个UI界面或者接口,作为课程设计的话将会更加完善。
1
该软件包使网络设计人员能够构建、模拟和定制他们自己的神经网络。 它支持递归和非递归网络架构。 每个层都包含为一个单独的子类(例如,lconv 是卷积层,llstm 是长短期记忆层),因此使研究人员能够创建自己的自定义层并将其合并到网络架构中。 提供了两个应用示例(手写数字识别和语音识别)。
2023-03-20 09:27:05 12.75MB matlab
1
emd的matlab代码详解使用 Apache MXNet 的循环神经网络 在我们之前的笔记本中,我们使用了一种称为卷积神经网络 (CNN) 的深度学习技术来对 和 进行分类。 尽管 CNN 是一种强大的技术,但它无法从音频和文本等输入序列中学习时间特征。 此外,CNN 旨在学习具有固定长度卷积核的空间特征。 这些类型的神经网络称为前馈神经网络。 另一方面,循环神经网络(RNN)是一种可以学习时间特征的神经网络,比前馈神经网络具有更广泛的应用。 在本笔记本中,我们将开发一个循环神经网络,用于预测给定前一个单词或字符的单词或字符的概率。 几乎我们所有人的智能手机上都有一个预测键盘,它可以为超快速打字提示即将出现的单词。 循环神经网络使我们能够构建类似于 SwiftKey 的最先进的预测系统。 我们将首先介绍前馈神经网络的局限性。 接下来,我们将使用前馈神经网络实现一个基本的 RNN,它可以很好地了解 RNN 的工作原理。 之后,我们将使用 MxNet 的 gluon API 设计一个具有 LSTM 和 GRU 层的强大 RNN。 我们将使用这个 RNN 来生成文本。 我们还将讨论以下主题
2023-03-19 17:57:22 1003KB 系统开源
1

为了进一步提高量子行为粒子群优化(QPSO) 算法的全局收敛性能, 有效改善算法中存在的粒子早熟问题,提出一种基于完全学习策略的改进QPSO 算法(CLQPSO). 该学习策略改变了QPSO 中局部吸引子的更新方式, 充分利用了种群的社会信息. 采用8 个测试函数对算法性能进行比较分析. 实验结果表明, 所提出的改进算法不仅收敛速度快, 而且全局收敛能力好, 收敛精度优于PSO 算法和QPSO 算法.

1
前馈网络反向传播算法的实例,三输入两输出
2023-03-19 14:04:02 2KB BP 神经网网 训练算法
1
针对传统控制理论的缺陷,提出了PID神经元网络及其控制系统,并介绍了其研究和应用。
2023-03-18 21:54:11 5.1MB PID 神经网络 控制系统
1