Team Viewer Quick Support Huawei 插件 支持 Android Ver.7 Add-On Huawei (b)- Version 12.1.7267.apk
2019-12-21 18:56:55 1.27MB team viewer andord ver.7
1
SVM本身是一个二值分类器,SVM算法最初是为二值分类问题设计的,当处理多类问题时,就需要构造合适的多类分类器。此安装包可以直接调用。
2019-12-21 18:55:06 848KB Support vect
1
最新android 8.0的 design包 27.0.0 包含:BottomNavigationView,Snackbar,FloatingActionButton,TabLayout,TextInputLayout,NavigationView...等等
2019-12-21 18:52:46 329KB design.jar包
1
Android资源:android.support.design.jar-25.0.0(jar、doc、source)
2019-12-21 18:52:44 472KB design
1
v7.jar包
2019-12-21 18:48:07 496KB v7
1
低版本使用ActionBar时不仅要用到 v7jar包 还需要资源文件 要求我们必须把v7jar包以项目的形式导入。 又了这个文件一切可以解决
2015-07-27 00:00:00 1.03MB v7 jar ,ActionBar
1
eclipse可用的Android Support Percent Library库,将项目导入eclipse,依赖该项目即可.PercentLinearLayout的编写请自行参考博文http://blog.csdn.net/sbsujjbcy/article/details/46693999
2015-07-01 00:00:00 1008KB Android Support Percent Library
1
android-support-v7-appcompat android-support-v7-gridlayout
2014-06-05 00:00:00 337KB android
1
android support library Android android-sdk extras support library 这个只包含extras 用于原来sdk的局部升级
2012-09-15 00:00:00 20.79MB Android android-sdk extras support
1
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples.
2009-02-19 00:00:00 12.09MB ebook svm
1