参数全部配置好了 直接改学号就可以交作业
1
SVM解决二分类问题的代码,直接就可以用,含水雷-岩石分类数据集并对四种核函数做调参,换一个数据集也能使用。过程流畅,注解详细,包教会
2022-06-10 16:05:01 226KB 二分类 SVM
这是论文的随附代码: Xanthopoulos, P., & Razzaghi, T. (2014)。 一种用于控制图模式识别的加权支持向量机方法。 计算机与工业工程,70, 134–149。 有一个基于 Lib SVM 的实现,用于控制图异常趋势模式的时间序列分类。 有关更多信息,请参阅原始气泡。
2022-06-10 10:41:43 195KB matlab
1
phog方法提取图像特征,svm支持向量机进行分类,分别有GA遗传算法和PSO粒子群优化算法进行寻优。
2022-06-09 16:49:06 30.42MB psosvm svm优化 粒子群 PSO优化SVM
吴恩达传统机器学习作业代码(python jupyter):线性回归、逻辑回归、神经网络、SVM、Kmeans决策树和自动调参数 吴恩达老师的机器学习课后习题Python 包含有8个单元,附带数据集,轻松入门机器学习。 适合人工智能专业初期的同学
2022-06-08 18:05:15 29.4MB 机器学习 python jupyter 线性回归
案例12 SVM神经网络的数据分类预测-葡萄酒种类识别.zip 自学案例 可以直接使用 已包含数据集 Matlab 深度学习 BP神经网络 神经网络 SVM 特征提取 分类 回归预测 粒子群算法 小波神经网络
2022-06-08 09:10:23 17KB 神经网络 支持向量机 分类 文档资料
优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,而目前依然是基于经验的办法解决。对此,本文采用粒子群优化算法对模型参数进行寻优,以测试集误差作为判决依据,实现模型参数的优化选择,使得预测精度有所提高。实际算例表明,本文的预测方法收敛性好、有较高的预测精度和较快的训练速度。
2022-06-07 16:43:14 365KB LSSVM参数寻优 SVM寻优 负荷数据处理
1
支持向量机_with_python 在本笔记本中,我们介绍了支持向量机(SVM)算法,这是一种功能强大但简单的监督学习方法,用于预测数据。 对于分类任务,SVM算法尝试将特征空间中的数据划分为不同的类别。 默认情况下,这种划分是通过构造最佳分割数据的超平面来执行的。 为了进行回归,构造了超平面以映射数据分布。 在这两种情况下,这些超平面均以非概率方式映射线性结构。 但是,通过采用内核技巧,我们可以将非线性数据集转换为线性数据集,从而使SVM可以应用于非线性问题。 SVM是功能强大的算法,已得到广泛普及。 这部分是由于它们在高维特征空间中有效,包括那些特征数与实例数相似或略微超过实例数的问题。 与具有大量数据集的内存需求很高的KNN不同,SVM可以提高内存效率,因为仅需要支持向量即可计算超平面。 最后,通过使用不同的内核,SVM可以应用于各种学习任务。 另一方面,这些模型是黑匣子,很难解释
2022-06-06 21:07:08 84KB JupyterNotebook
1
SVM(support vector machine)支持向量机: 注意:本文不准备提到数学证明的过程,一是因为有一篇非常好的文章解释的非常好:支持向量机通俗导论(理解SVM的三层境界) ,另一方面是因为我只是个程序员,不是搞数学的(主要是因为数学不好。),主要目的是将SVM以最通俗易懂,简单粗暴的方式解释清楚。 线性分类: 先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样: 这种方法被称为:线性分类器,一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane)。也就是说,数据不总是二维的,比如
2022-06-06 18:23:49 231KB python python算法 svm
1
为了使用支持向量机(SVM)算法进行多类分类,在SVM二分类基础上,提出使用排序算法中冒泡排序的思想进行SVM多类别数据分类。使用该方法在选取的UCI数据集进行实验,结果表明,在保证较高正确率的情况下,相对传统一对一的多分类方法,该方法较大幅地减少了分类时间,是一种应用性较强的SVM多类分类方法。
2022-06-06 01:05:22 365KB 支持向量机
1