labview 实验二(计算随机数列的均值和标准偏差,有改进的程序在里面哦
1
k均值约束 K-均值聚类实现,可以为每个聚类指定最小和/或最大大小。 通过将K-means实现公式化为最小成本流(MCF)线性网络优化问题,它可以修改集群分配步骤(EM中的E)。 然后,使用成本缩放推入重新标记算法解决此问题,并使用这是一种快速的C ++实现)。 该软件包的灵感来自 。 Bradley等人提出的原始最低成本流(MCF)网络。 已被修改,因此最大群集大小和最小群集大小也可以指定。 该代码基于并实现了相同的 。 参考: 安装 您可以从PyPI安装k-means-constrained: pip install k-means-constrained 在Python 3.6及更高版本中受支持。 例子 可以在API文档中找到更多详细信息。 >> > from k_means_constrained import KMeansConstrained >> > i
2021-09-29 15:46:50 10.65MB python clustering optimization ml
1
matlab实现模糊C均值聚类,附带包含600个2维数据的数据集,可视化展示结果。数据集有3类,分别分布在第一、二 三象限。
2021-09-29 14:45:59 14KB matlab FCM
1
该方法自适应地将一个复杂的非平稳的多分量信号分解为若干个瞬时频率具有物理意义的乘积函数(Product function
层次聚类算法,matlab程序,是一种基于层次聚类法的算法。
2021-09-28 16:07:07 4KB nan Matlab层次聚类 层次聚类法 long7gr
电影作为典型的短周期、体验型产品,其票房收益受众多因素的共同影响,因此对其票房进行预测较为困难.本文主要构建了一种基于加权K-均值以及局部BP神经网络(BPNN)的票房预测模型对目前的票房预测模型存在的不足进行改进,从而提高票房预测的精度:(1)构建基于随机森林的影响因素影响力测量模型,并以此为依据对票房影响因素进行筛选,以此来简化后续预测模型的输入;(2)考虑到不同影响因素对票房的影响力不同的现实情况,为了解决以往研究中对影响因素权重平均分配的问题,本文构建了基于加权K-均值和局部BP神经网络的票房预测模型,以因素影响力为依据对样本数据进行加权的K-均值聚类,并基于子样本构建局部BP神经网络模型进行票房预测.实验证明,本文所构建的模型平均绝对百分比误差(MAPE)为8.49%,低于对比实验的10.39%,可以看出本文构建的基于加权K-均值以及局部BP神经网络的票房预测模型的预测结果要优于对比模型的预测结果.
2021-09-28 13:00:14 1.44MB 电影票房 预测 加权K-均值 BP神经网络
1
模糊均值算法,C语言实现,可运行 模糊均值算法,C语言实现,可运行
2021-09-27 15:40:19 912KB 模糊算法 c语言 均值算法
1
用于图像去噪效果不错,可用于红外图像去噪 matlab程序
2021-09-27 11:03:21 572KB 图像去噪
SAE-发动机均值模型.zip
2021-09-27 11:01:21 177KB simulink 发动机
1