高中数学讲义微专题83 特殊值法解决二项式展开系数问题.pdf
2021-07-13 14:02:51 292KB 高中数学
好看的progressbar 样式,弥补winform 默认样式的单调。
2021-07-12 14:38:20 17KB ProgressBar Style Winform c#
1
马蒂厄函数理论基础及应用 作者:熊天信 著 出版时间:2014年版 内容简介   在椭圆柱坐标系中,由波动方程得到角向马蒂厄方程和径向马蒂厄方程,然后讨论角向马蒂厄方程和径向马蒂厄方程的解,即角向马蒂厄函数和径向马蒂厄函数,根据马蒂厄函数的性质,对马蒂厄函数进行分类,规范了角向马蒂厄函数和径向马蒂厄函数的函数符号。给出了马蒂厄函数用三角函数和贝塞尔函数级数展开的各种形式,进而得到它们的一阶导数的表达式,另外还对马蒂厄函数的积分形式进行讨论。讨论了马蒂厄函数的数值计算方法,编写出所有马蒂厄函数及其一阶导数的Fortran数值计算程序,通过数值计算,绘制出了一些典型的马蒂厄函数及其一阶导数的函数图像。最后,给出马蒂厄函数的一些典型应用示例。 目录 第1章 马蒂厄方程 1.1 正交曲线坐标系 1.1.1 正交曲线坐标系的定义和坐标系之间的变换关系 1.1.2 正交曲线坐标系中标量函数的梯度 1.1.3 正交曲线坐标系中矢量函数的散度 1.1.4 正交曲线坐标系中矢量函数的旋度 1.2 马蒂厄方程 1.2.1 椭圆柱坐标系 1.2.2 角向马蒂厄方程与径向马蒂厄方程 第2章 角向马蒂厄函数 2.1 角向马蒂厄方程的解 2.1.1 解的一般性质——基本解 2.1.2 弗洛凯解 2.1.3 角向马蒂厄方程的周期解 2.2 整数阶角向马蒂厄函数 2.2.1 q=0时角向马蒂厄方程的解 2.2.2 q)O时角向马蒂厄方程的解——整数阶角向马蒂厄函数 2.3 马蒂厄函数的数值计算 2.3.1 概述 2.3.2 角向马蒂厄函数傅里叶级数展开系数的递推关系 2.3.3 角向马蒂厄方程的特征值的计算 2.3.4 特征值am和bm的特征曲线 2.4 角向整数阶马蒂厄函数的正交归一化关系 2.5 角向马蒂厄函数图像 2.6 角向马蒂厄函数数表 2.7 角向马蒂厄方程的非周期解 2.7.1 周期解与非周期解的关系 2.7.2 非周期角向马蒂厄函数的定义 2.7.3 非周期角向马蒂厄函数的归一化 2.8 负参数角向马蒂厄函数 2.8.1 负参数角向马蒂厄方程的周期解 2.8.2 负参数非周期角向马蒂厄函数 2.9 分数阶角向马蒂厄函数 2.10 马蒂厄方程的稳定解与非稳定解 第3章 径向马蒂厄函数 3.1 径向马蒂厄函数的分类概述 3.2 第一类径向马蒂厄函数 3.2.1 函数Jem(ξ,q)和Jom(ξ,q)的形式 3.2.2 非周期径向马蒂厄函数F%(ξ,q)和G‰(ξ,q) 3.2.3 函数Jem(ξ,q)和Jom(ξ,q)的导数 3.2.4 函数Jem(ξ,q)和Jom(ξ,q)及其导数曲线 3.2.5 第一类径向马蒂厄函数及其导数数表 3.3 第二类径向马蒂厄函数 3.3.1 函数Nem(ξ,q)和Nom(ξ,q)的形式 3.3.2 函数Nem(ξ,q)和Nom(ξ,q)的导数 3.3.3 函数Nem(ξ,q)和Nom(ξ,q)及其导数曲线 3.3.4 第二类径向马蒂厄函数及其导数数表 3.4 第一类变形贝塞尔型径向马蒂厄函数 3.4.1 函数Iem(ξ,-q)和Iom(ξ,-q)的形式 3.4.2 函数Iem(ξ,q)和Iom(ξ,q)的导数 3.4.3 函数Iem(ξ,q)和Iom(ξ,q)曲线 3.5 第二类变形贝塞尔型径向马蒂厄函数 3.5.1 函数Kem(ξ,-q)和Kom(ξ,-q)的形式 3.5.2 函数Kem(ξ,q)和Kom(ξ,q)的导数 3.5.3 径向马蒂厄函数之间的恒等关系 3.5.4 函数Kem(ξ,q)和Kom(ξ,q)曲线 3.6 马蒂厄一汉克尔函数 3.7 用贝塞尔函数级数展开的角向马蒂厄函数 3.8 马蒂厄函数的收敛性 3.9 径向马蒂厄函数的渐近式 3.9.1 贝塞尔函数型的径向马蒂厄函数的渐近式. 3.9.2 变形贝塞尔函数型的径向马蒂厄函数的渐近式 第4章 马蒂厄函数的积分表示及其相互关系 4.1 角向马蒂厄函数的核 4.2 角向马蒂厄函数的贝塞尔函数级数展开 4.3 角向马蒂厄函数的积分关系 4.4 径向马蒂厄函数的积分关系 4.4.1 贝塞尔型径向马蒂厄函数的积分关系 4.4.2 变形贝塞尔型径向马蒂厄函数的积分关系 4.5 用贝塞尔函数和三角函数表示的核 4.6 用贝塞尔函数乘积展开的马蒂厄函数 4.7 马蒂厄函数乘积的积分表示和级数展开 4.8 用马蒂厄函数的级数展开其他函数 第5章 马蒂厄函数的应用 5.1 椭圆形薄膜振动 5.2 四极杆质量分析器的基本原理 5.2.1 四极杆质量分析器中马蒂厄方程的推导 5.2.2 离子运动轨迹与稳定性图 5.3 椭圆波导 5.3.1 椭圆波导中的电磁场 5.3.2 椭圆波导中的本征模 5.3.3 椭圆波导的截止波长和截止频率 5.4 椭圆谐振腔 5.4.1
2021-07-12 09:12:35 43.72MB 马蒂厄函数 熊天信 特殊函数 数学
1
GB2312简体中文编码表+Unicode汉字编码表+特殊符号UNICODE码
2021-07-12 04:30:31 185KB GB2312 Unicode 特殊符号
1
高等数学ppt课件 5-6几种特殊类型函数的积分
2021-07-09 14:02:26 1.97MB 高等数学ppt课件5-6几种特
该笔记由博主本人亲自整理撰写,介绍以及各方面的操作都进行了简化提示,很适合linux的萌新进行学习,内容大致:【命令介绍】【物理卷卷】【卷组】【逻辑卷】【扩展、缩小逻辑卷】【删除所有卷】
2021-07-08 13:12:26 2KB linux 磁盘阵列 个人笔记
1
一行代码解决UITextFiled和UITextView限制字数和输入特殊字符
2021-07-08 11:53:27 43KB Swift开发-文本输入和显示
1
第1章 矩阵运算1 1.1 实矩阵相乘1 1.2 复矩阵相乘4 1.3 一般实矩阵求逆8 1.4 一般复矩阵求逆13 1.5 对称正定矩阵的求逆18 1.6 托伯利兹矩阵求逆的特兰持方法21 1.7 求一般行列式的值25 1.8 求矩阵的秩29 1.9 对称正定矩阵的乔里斯基分解与行列式求值33 1.10 矩阵的三角分解36 1.11 一般实矩阵的QR分解41 1.12 一般实矩阵的奇异值分解46 1.13 求广义逆的奇异值分解法61 第2章 矩阵特征值与特征向量的计算75 2.1 求对称三对角阵的全部特征值与特征向量75 2.2 求实对称矩阵全部特征值与特征向量的 豪斯荷尔德变换法80 2.3 求赫申伯格矩阵全部特征值的QR方法88 2.4 求一般实矩阵的全部特征值95 2.5 求实对称矩阵特征值与特征向量的雅可比法102 2.6 求实对称矩阵特征值与特征向量的雅可比过关法109 第3章 线性代数方程组的求解115 3.1 求解实系数方程组的全选主元高斯消去法115 3.2 求解实系数方程组的全选主元高斯\|约当消去法119 3.3 求解复系数方程组的全选主元高斯消去法124 3.4 求解复系数方程组的全选主元高斯\|约当消去法129 3.5 求解三对角线方程组的追赶法135 3.6 求解一般带型方程组139 3.7 求解对称方程组的分解法146 3.8 求解对称正定方程组的平方根法151 3.9 求解托伯利兹方程组的列文逊方法155 3.10 高斯\|赛德尔迭代法161 3.11 求解对称正定方程组的共轭梯度法165 3.12 求解线性最小二乘问题的豪斯荷尔德变换法169 3.13 求解线性最小二乘问题的广义逆法175 3.14 求解病态方程组189 第4章 非线性方程与方程组的求解195 4.1 求非线性方程实根的对分法195 4.2 求非线性方程一个实根的牛顿法198 4.3 求非线性方程一个实根的埃特金迭代法201 4.4 求非线性方程一个实根的试位法204 4.5 求非线性方程一个实根的连分式法206 4.6 求实系数代数方程全部根的QR方法211 4.7 求实系数代数方程全部根的牛顿下山法216 4.8 求复系数代数方程全部根的牛顿下山法225 4.9 求非线性方程组一组实根的梯度法233 4.10 求非线性方程组一组实根的拟牛顿法238 4.11 求非线性方程组最小二乘解的广义逆法246 4.12 求非线性方程一个实根的蒙特卡洛法262 4.13 求实函数或复函数方程一个复根的蒙特卡洛法265 4.14 求非线性方程组一组实根的蒙特卡洛法269 第5章 插值与逼近274 5.1 Lagrange插值274 5.2 连分式插值277 5.3 埃尔米特插值281 5.4 埃特金逐步插值284 5.5 光滑插值288 5.6 第一种边界条件的三次样条函数插值、微商与积分294 5.7 第二种边界条件的三次样条函数插值、微商与积分301 5.8 第三种边界条件的三次样条函数插值、微商与积分307 5.9 二元Lagrange插值314 5.10 最小二乘曲线拟合319 5.11 切比雪夫曲线拟合326 5.12 最佳一致逼近的里米兹方法332 5.13 矩形域的最小二乘曲面拟合337 第6章 数值积分348 6.1 变步长梯形求积法348 6.2 变步长辛卜生求积法351 6.3 自适应梯形求积法353 6.4 龙贝格求积法356 6.5 计算一维积分的连分式法359 6.6 高振荡函数求积法363 6.7 勒让德-高斯求积法368 6.8 拉盖尔-高斯求积法371 6.9 埃尔米特-高斯求积法374 6.10 切比雪夫求积法376 6.11 计算一维积分的蒙特卡洛法379 6.12 变步长辛卜生二重积分法382 6.13 计算多重积分的高斯方法386 6.14 计算二重积分的连分式法391 6.15 计算多重积分的蒙特卡洛法395 第7章 常微分方程组的求解399 7.1 定步长欧拉方法399 7.2 变步长欧拉方法404 7.3 维梯方法409 7.4 定步长龙格-库塔方法414 7.5 变步长龙格-库塔方法419 7.6 变步长基尔方法424 7.7 变步长默森方法430 7.8 连分式法436 7.9 双边法444 7.10 阿当姆斯预报校正法450 7.11 哈明方法456 7.12 特雷纳方法463 7.13 积分刚性方程组的吉尔方法470 7.14 二阶微分方程边值问题的数值解法487 第8章 数据处理494 8.1 随机样本分析494 8.2 一元线性回归分析499 8.3 多元线性回归分析503 8.4 逐步回归分析510 8.5 半对数数据相关521 8.6 对数数据相关525第9章 极值问题的求解
2021-07-08 11:09:20 85KB c++ 方程组求解 特殊矩阵
1
完整英文版 IEC 60730-2-11:2019 Automatic electrical controls Part 2-11:Particular requirements for energy regulators(自动电气控制第 2-11 部分:能量调节器的特殊要求)。IEC 60730-2-11:2019 适用于在设备中使用、在设备上使用或与设备结合使用的能量调节器,包括用于加热、空调和类似应用的能量调节器。 该设备可以使用电、气、油、固体燃料、太阳能热等或其组合。本标准适用于与设备安全相关的固有安全、操作值、操作时间和操作顺序,以及用于或与设备相关的自动电能调节装置的测试。 本标准也适用于 IEC 60335-1 范围内的电器的能量调节器。
2021-07-08 09:03:38 1.08MB iec 60730-2-11 自动电气控制 能量调节器
完整英文版 IEC 60730-2-9:2018 Automatic electrical controls - Part 2-9:Particular requirements for temperature sensing control (自动电气控制 - 第2-9部分:温度感应控制的特殊要求)。IEC 60730-2-9:2015+A1:2018+A2:2020 适用于在设备中使用、在设备上或与设备相关的自动电气温度传感控制,包括用于加热、空调和类似应用的电气控制。 该设备可以使用电、气、油、固体燃料、太阳能热等,或它们的组合。 本标准适用于构成 ISO 16484 范围内楼宇自动化控制系统一部分的自动电气温度传感控制。本标准也适用于公众可能使用的设备的自动电气温度传感控制,例如用于 可用于商店、办公室、医院、农场以及商业和工业应用。
2021-07-08 09:03:37 6.79MB iec 60730-2-9 自动电气控制 温度