本文介绍了CTR(Click-Through-Rate,点击率)的概念,并探讨了如何使用逻辑回归来预测CTR。作者提出了一种新的CTR预测模型,并通过实验证明了其有效性。本文对CTR预测领域的研究具有重要的参考价值。
2023-06-19 18:55:15 1.19MB 逻辑回归 毕业设计
1
温度预测 python
2023-06-18 17:17:49 143KB python
1
Crime-Prediction:客户的犯罪预测,数据集由客户提供
2023-06-14 11:07:33 371KB Python
1
基于Qt实现的股票分析预测软件,实现外排序功能,程序加载数据内存限制不超过30MB算法逻辑,创建索引,加快数据获取,根据股票的年月和代码进行k线图展示,热力图展示,相关系数计算,最后价格预测和股票价格曲线展示。对股票数据进行多个处理操作,包括外排序、创建索引、统计分析、价格预测和可视化展示。 基于X86架构的英特尔处理器,操作系统为Windows系统,而软件开发工具主要采用的是QTCreator。
2023-06-13 17:53:23 84.54MB qt 软件/插件 金融商贸 C++
1
此函数执行 Clark-West 测试以预测性能。 有关更多详细信息,请参阅文档。
2023-06-07 08:49:31 2KB matlab
1
人工智能和机器学习在满足全球对清洁、廉价和可靠能源的需求方面发挥着至关重要的作用。 最近的研究表明,与传统的化石能源相比,世界对可再生能源的投资更多,这引起了人们对其利用最大化的兴趣。 本文展示了对供需曲线的研究,人工智能如何通过智能评估不可预测的天气条件和管理集成系统(可再生能源和化石燃料的组合)来优化电力生产,从而预测能源的未来需求. 这样一来,清洁能源就可以为人们生产,降低存储成本和消费者计费成本; 它将通过使用可再生能源来提高产出。
2023-06-02 01:13:22 420KB Optimization of Renewable Resources
1
机器学习大作业--基于线性回归的PM2.5预测 收集合肥地区过去一段时间(例如过去一年每个月的平均值)的空气质量(例如pm2.5值),然后构建回归模型,能够预测今年某个月的空气质量值 使用模型 线性回归模型 矩阵模型 梯度下降公式
基于线性回归的PM2.5预测系统python源码,包含了所有的数据以及代码。可供学习及设计参考。 # import library # import csv import numpy as np from numpy.linalg import inv import random import math import sys # read data # data = [] # 每一个维度存储一种污染物的数据,一共有18种污染物 for i in range(18): data.append([]) # []表示这十八个输入中,每一个输入都是一个列表 n_row = 0 # 初始从第0行开始 # 打开数据文件,文件big5编码为繁体字 text = open('D:/PythonCodes/CNN/train.csv', 'r', encoding='big5') # 读取名称为text的Excel文件,返回文件行的累加信息,类型为_csv.reader row = csv.reader(text , delimiter=",") # r中保存了当前行的所有信息
预测二氧化碳排放量 目录 关于 预测汽车的CO2排放对于在汽车模型中产生较少的CO2很有用,它将减少二氧化碳在环境中的有害影响。 在该项目中,对数据集进行feature engineering以选择影响车辆二氧化碳排放的特征。 splitting数据按scaling并将其splitting为训练和测试数据集后, splitting进行cross validation 。 在分析learning curve ,然后使用训练数据训练模型。 最后,该模型是对测试数据进行测试,并evaluated的基础上, mean squared error和r2 score 。 使用的技术 用作编程语言。 Numpy用于数学和数据处理。 Pandas用于分析和处理数据。 Matplotlib和Seaborn用于数据可视化,有助于数据分析。 Sciki-learn用于数据预处理,创建机器学习模型并
1
如果您正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,那么我们的资源库将为您提供一切所需。本资源库提供了一系列案例,包括数据可视化、数据清洗、机器学习模型构建和数据预测等内容。我们的案例旨在帮助您更好地了解R语言的使用和机器学习的基础知识。 我们的资源库包括以下主题: 数据可视化:使用ggplot2包和其他R语言可视化工具,展示如何将数据可视化,从而更好地理解数据并做出更明智的决策。 数据清洗:展示如何使用dplyr包和其他数据清洗工具来清洗和准备数据,使其可以用于机器学习模型的训练。 机器学习模型构建:使用caret包和其他机器学习工具,构建和训练各种类型的机器学习模型,包括回归、分类和聚类模型等。 数据预测:展示如何使用机器学习模型来预测未来数据,并对预测结果进行评估和优化。 每个案例都包含完整的代码和数据集,可以帮助您更好地了解每个步骤的细节和操作。我们的资源库适合各种级别的用户,包括初学者和有经验的用户。您可以根据自己的兴趣和需求选择不同的主题,并按照自己的步骤和想法来运行代码和修改案例。 如果正在寻找一份完整的R语言数据分析、数据预测和机器学习案例,
2023-05-24 10:51:57 2KB r语言 数据分析 机器学习
1