Reconstruction of absorption coefficient \mu_{a} and scattering coefficient \mu_{s} is very important for applications of diffuse optical tomography and near infrared spectroscopy. Aiming at the early cancer detection of cervix and stomach, we present a fast inverse Monte-Carlo scheme for extracting \mu_{a} and \mu_{s} of a tubular tissue from the measurement on frequency domain. Results show that the computation time for reconstructing one set of \mu_{a} and \mu_{s} is less than 1 min and the r
Slow and fast light in quantum-well (QW) and quantum-dot (QD) semiconductor optical amplifiers (SOAs) using nonlinear quantum optical effects are presented. We demonstrate electrical and optical controls of fast light using the coherent population oscillation (CPO) and four wave mixing (FWM) in the
Pedestrian detection is a fundamental problem in video surveillance. An overwhelming majority of existing detection methods are based on sliding windows with exhaustive multi-scale scanning over the whole frame images which can achieve good accuracy but suffer from expensive computational cost. To reduce the complexity significantly while keeping high accuracy, in this paper, we propose an effective and efficient pedestrian detection method based on sliding windows with well-designed multi-scale