该PPT讲解了反向传播神经网络模型的推导及数学计算,有助于理解反向传播。
2022-03-23 10:23:00 604KB 神经网络 反向传播
1
CSE523-机器学习-KHVM 一种音乐推荐系统,它使用协作过滤和机器学习算法(例如K近邻和奇异值分解(SVD))根据用户的喜好向用户推荐歌曲。 介绍 Music Recommend系统是一种根据用户的不同选择来预测或过滤偏好的系统,它从用户过去的收听历史中学习,并向他们推荐他们将来可能希望听到的各种歌曲。协作过滤算法可预测(还可以通过收集用户的喜好来过滤用户的品味,并实现来自许多其他用户的品味(协作)。 在项目的第一阶段,我们使用k最近邻算法构建了一个推荐系统,我们的系统还使用了表示均方根误差的RMSE。 对数据集进行预测时存在的误差的标准偏差称为RMSE。 均方根误差(RMSE)是用于确定回归线与数据点的匹配程度的度量。沿着RMSE,我们还应用了奇异值分解(SVD).SVD是将矩阵分解为奇异向量的另一种方法和奇异值。 SVD通常在机器学习中用作数据缩减工具,并在其他矩阵运算(例如
2022-03-22 23:30:03 2.59MB JupyterNotebook
1
变型空间和候选消除(2) 下一步需要什么样的训练样例 一般来说,概念学习的最优查询策略,是产生实例以满足当前变型空间中大约半数的假设。这样,变型空间的大小可以在遇到每个新样例时减半,正确的目标概念就可在只用log2|VS|次实验后得到。
2022-03-21 20:57:13 7.1MB 机器学习 算法汇总 算法大全
1
跟随前一个上传资源,MATLAB的说明部分,希望也能给与其他人一启示。
2022-03-20 20:56:59 7.58MB 迭代学习 ,算法,MATLAB
1
NLP聚类实验数据,仅供学习使用 使用方法: import pandas as pd table=pd.read_pickle('../data/jvlei_test.pkl') print(table)
2022-03-20 14:26:14 23.6MB 聚类 自然语言处理 学习 算法
1
多主体强化学习(MARL) 使用rllab通过量化在不同环境中执行的多个代理的随机梯度来开发强化学习。 实验室 rllab是用于开发和评估强化学习算法的框架。 它包括各种各样的连续控制任务以及以下算法的实现: rllab与完全兼容。 有关说明和示例,请参见。 rllab仅正式支持Python 3.5+。 对于坐在Python 2上的rllab的旧快照,请使用。 rllab支持在EC2集群上运行强化学习实验以及用于可视化结果的工具。 有关详细信息,请参见。 主要模块使用作为基础框架,并且我们在下支持TensorFlow。 文献资料 在线提供了文档: https : //rllab.readthedocs.org/en/latest/ 。 引用rllab 如果您使用rllab进行学术研究,强烈建议您引用以下文章: 严端,陈曦,赖因·豪特霍夫特,约翰·舒尔曼,彼得·阿比尔。 “对
2022-03-18 18:31:48 10.24MB Python
1
关于深度学习算法评估的规范,目前主要聚焦在可靠性方面,后续还会有关于可移植性和效率方面的内容。3.3MB清晰PDF
2022-03-14 13:33:49 3.04MB 深度学习 标准 评估
1
K均值(k-Means)算法的推导 问题框架 要估计k个正态分布的均值= 观察到的数据是X={} 隐藏变量Z={}表示k个正态分布中哪一个生成xi 用于K均值问题的表达式Q(h’|h)的推导 单个实例的概率
2022-03-12 16:49:34 7.1MB 机器学习 算法汇总
1
PageRank、SVM、决策树、K均值、KNN、朴素贝叶斯、Apriori、EM、AdaBoost、Cart等算法的原理、实例及部分可用软件的介绍
2022-02-28 16:08:51 3.93MB 机器学习算法
1