Virtins Multi Instrument 3.2 破解文件
2021-07-29 16:48:06 26KB Virtins Multi Instrument 破解
1
logistic regression on the SVM’s scores, fit by an additional cross-validation on the training data. In the multiclass case, this is extended as per
2021-07-27 15:18:10 599KB SVM
1
HOTA - A Higher Order Metric for Evaluating Multi-object Tracking
2021-07-24 18:03:34 3.59MB HOTA Tracking
1
Seamless Image-Based Texture Atlases using Multi-band Blending
2021-07-24 14:03:02 541KB Seamless Blending Multi-band
1
称为MOJaya的多目标Jaya算法是一种基于SPEA2(提高强度帕累托进化算法)和 Jaya 算法。
2021-07-24 08:22:35 4KB matlab
1
MFILEMON是用于32位和64位MS Windows(2000 / XP / 2003/2008/2012 / Vista / 7/8/10)的打印监视器。 它可以根据模式自动执行“打印到文件”作业,从而选择文件名。 它可以将数据重定向到外部程序(例如,Ghostscript,以生成PDF)。
2021-07-23 23:03:53 935KB 开源软件
1
数据融合matlab代码多尺度深度CNN用于锐化 (1)该matlab代码包括两个用于MS和Pan图像融合的深层卷积网络的实现:MSDCNN:Q. Yuan,Y. Wei,X. Meng等,《遥感图像的多尺度和多深度卷积神经网络》。泛磨削[J]。 IEEE在应用地球观测与遥感中精选主题杂志,2018,11(3):978-989。 DRPNN:Wei Y,Yuan Q,Shen H等。 关键词:学习深度残差网络,提高多光谱图像的锐化精度IEEE地球科学与遥感快报,2017,14(10):1795-1799。 (2)在运行代码之前,您至少需要在设备上编译MatConvNet。 如果您想训练自己的模型,也建议使用Caffe和MatCaffe。 *当前提供的模型仅支持融合4波段的MS图像和1波段的PAN图像,例如QuickBird,IKONOS和Pleiades。 (3)如果您只想使用作者训练的模型来融合您的数据,请执行以下操作: 一种。 将您的matlab路径设置为此文件夹,然后添加所有子文件夹。 b。 将您的MS和Pan图像放在./testdata中,并使用它们的文件名替换文件“ Demo
2021-07-23 21:12:41 21.21MB 系统开源
1
多标签分类的种类 对于张量流 2/01〜3/01 Dacon Mnist多标签分类3/01〜使用Pos对单词顺序进行分类 3070 rtx tensorflow版本和cuda版本 CUDA 11.0 库德11.0 tf-nightly == 2.5.0.dev20201212 它对我有用 开发设置 视窗:
2021-07-22 10:27:13 697KB JupyterNotebook
1
经典OFDM教材,原书第二版 Multi-Carrier Digital Communications Theory and Applications of OFDM, Second Edition Multi-carrier modulation, Orthogonal Frequency Division Multiplexing (OFDM) particularly, has been successfully applied to a wide variety of digital communications applications over the past several years. OFDM has been chosen as the physical layer standard for a variety of important systems and its implementation techniques continue to evolve rapidly. This book is a valuable summary of the technology, providing an understanding of new advances as well as the present core technology. A unified presentation of OFDM performance and implementation over a wide variety of channels, including both wireline and wireless systems, is made. This will prove valuable both to developers of such systems and to researchers and graduate students involved in analysis of digital communications. In the interest of brevity, the authors have minimized treatment of more general communication issues. There exist many excellent texts on communication theory and technology. Only brief summaries of topics not specific to multi-carrier modulation are presented in this book where essential. As a background, it is assumed that the reader has a clear knowledge of basic fundamentals of digital communications. Highlights of the Second Edition During the past few years since the publication of the first edition of this text, the technology and application of OFDM have continued their rapid pace of advancement. As a result, it became clear that a new edition of the text would be highly desirable. The new edition provides the opportunity to make those corrections and clarifications whose need became apparent from continued discussions with many readers. However, the main purpose is to introduce new topics that have come to the forefront during the past few years, and to amplify the treatment of other subject matter. Because of the particularly rapid development of wireless systems employin
2021-07-21 09:20:51 11.38MB Multi-carrier 多载波 OFDM 第二版
1
pytorch-multi-label-classifier 引言 实现的用于多标签分类的分类器。 您可以轻松地train , test多标签分类模型并visualize训练过程。 以下是可视化单标签分类器训练的示例。 如果您有多个属性,则毫无疑问,每个属性的所有损失和准确性曲线将在Web浏览器上有序显示。 失利 准确性 模块 data 数据准备模块,包括读取和转换数据。 所有数据label.txt以某种预定义的格式存储在data.txt和label.txt ,如下所述。 model 脚本来构建多标签分类器模型。 您的模范样板应该放在这里。 options 训练测试和可视化选项在这里定义 util webvisualizer :一个用于可视化的每个属性的损失和准确性基于可视化工具 util :项目中使用的其他功能 html :在webvisualizer中使用。 test mn
1