The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 11:03:37 11.6MB kernel machine learning svm
1
The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 11:03:00 12.47MB kernel machine learning svm
1
The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 11:01:35 12.13MB kernel machine learning svm
1
The Support Vector Machine is a powerful new learning algorithm for solving a variety of learning and function estimation problems, such as pattern recognition, regression estimation, and operator inversion. The impetus for this collection was a workshop on Support Vector Machines held at the 1997 NIPS conference. The contributors, both university researchers and engineers developing applications for the corporate world, form a Who's Who of this exciting new area. Contributors: Peter Bartlett, Kristin P. Bennett, Christopher J. C. Burges, Nello Cristianini, Alex Gammerman, Federico Girosi, Simon Haykin, Thorsten Joachims, Linda Kaufman, Jens Kohlmorgen, Ulrich Kreßel, Davide Mattera, Klaus-Robert Müller, Manfred Opper, Edgar E. Osuna, John C. Platt, Gunnar Rätsch, Bernhard Schölkopf, John Shawe-Taylor, Alexander J. Smola, Mark O. Stitson, Vladimir Vapnik, Volodya Vovk, Grace Wahba, Chris Watkins, Jason Weston, Robert C. Williamson.
2022-06-27 10:54:12 15.06MB kernel machine learning svm
1
针对中长期电量预测可使用的相关历史数据较少、影响因素较为复杂等特点,提出一种基于改进GM(1,1)和支持向量机的优化组合预测模型。该模型将改进灰色预测模型和支持向量机模型进行组合,采用蛙跳寻优算法求取组合预测模型中各单一模型的权重,构建基于蛙跳优化的组合预测模型。将优化后的组合预测模型应用于我国中长期电量预测,选择我国1991-2005年电量进行分析,对2006-2010年的电量进行预测,并与一般组合预测模型及各单一模型进行比较。研究结果表明:本文方法得到的电量平均相对误差为2.06%,比等权组合预测模型
2022-06-25 16:53:56 534KB 自然科学 论文
1
基于遗传算法和Bagging-SVM集成分类器
2022-06-24 12:05:14 6.01MB 遗传算法 bagging svm 集成
matlab实现垃圾邮件分类代码垃圾邮件分类 该项目旨在将垃圾邮件和非垃圾邮件从 . 学习目标是熟悉MATLAB上的CVX工具箱,从头开始编码SVM优化问题。 需要在 MATLAB 上运行代码。 然而,工作可以分为三个步骤—— 1. Feature Extraction 2. Email Classification 3. Parameter Tuning 下面简要说明这些步骤。 但是,请参阅详细说明。 1.特征提取 调用函数 该数据库包含 6,050 封电子邮件,垃圾邮件比率为 30%。 首先,使用 rename.m 代码将所有电子邮件重命名为 .txt 文件。 在所有文件都可以访问后,为每封电子邮件提取一个特征向量,而特征标签为 1 代表垃圾邮件,0 代表非垃圾邮件。 对于此任务,每封电子邮件都会调用 processEmail.m。 然后,它会按照问题描述中给出的规范化程序截取调用 porterStemmer.m 的电子邮件中的单词。 然后将每个词干词与 vocabList.txt 文件中的字典词进行比较。 字典里有1899个字。 初始特征向量是一列零。 如果字典中的单词出现在电子
2022-06-23 14:52:05 2.34MB 系统开源
1
支持向量机算法简单实现和评估。基于tensorflow框架实现
2022-06-21 22:44:21 15KB 算法
1
支持向量机作为非参数方法已经广泛应用于信用评估领域.为克服其训练高维数据不能主动进行特征选择导致准确率下降的缺点,构建C4.5决策树优化支持向量机的信用评估模型.利用C4.5信息熵增益率方法进行属性选择,减少冗余属性.模型通过网格搜索确定最优参数,使用F-score和平均准确率评价模型性能,并在两组公开数据集上进行验证.实证分析表明,C4.5决策树优化支持向量机的信用评估模型有效减少了数据学习量,较于传统各类单一模型有较高的分类准确率和实用性.
1