Matlab基于k均值聚类学习算法的rbf神经网络实现-基于k均值聚类学习算法的rbf神经网络实现.rar 基于k均值聚类学习算法的rbf神经网络实现
2020-12-26 10:47:03 991B matlab
1
利用RBF网络(隐含层神经单元个数和学习率等参数可在内部修改,不作为输入参数)学习和训练,并对输入的测试样本做出响应。 输入和输出维数可以多维。 实际运行,逼近y=sin(t)函数效果不错。
2020-12-26 10:39:55 2KB RBF;MATLAB
1
Matlab的RBF神经网络用于模式分类-RBF 神经网络用于模式分类.rar RBF 神经网络用于模式分类
2020-12-10 22:03:05 1KB matlab
1
包括两个MATLAB源代码和一个TEXT说明文件 包括RBF分类和回归代码
2020-12-10 21:44:52 3KB RBF神经网络
1
该资源为RBF神经网络的分类和回归,简单而实用
2020-12-10 20:40:37 4KB RBF 径向基函数 神经网络
1
利用RBF神经网络,将三容水箱正常工作数据和故障数据进行分类,达到故障检测目的。
2020-12-02 17:52:26 431KB RBF
1
光伏阵列能否正常工作直接关系到整个光伏发电系统运行的安全性和可靠性。对于光伏阵列故障诊断中传统的BP神经网络诊断算法准确率低、收敛速度慢等问题,提出一种基于粒子群优化RBF神经网络的故障诊断算法。建立以光伏阵列的4种故障特征参数为输入、5种情况为输出的故障诊断模型,对基于粒子群算法的网络模型的自适应权重寻优进行仿真实验。最后,将优化算法与BP神经网络算法以及RBF神经网络算法进行对比。实验结果表明,优化算法不仅可以有效地诊断光伏阵列的故障类型,而且还可以提高故障诊断的准确率。
2020-11-26 16:42:52 958KB 行业研究
1
共有七个完整算法 % 1.基于聚类的RBF 网设计算法 % 一维输入,一维输出,逼近效果很好! SamNum = 100; % 总样本数 TestSamNum = 101; % 测试样本数 InDim = 1; % 样本输入维数 ClusterNum = 10; % 隐节点数,即聚类样本数 Overlap = 1.0; % 隐节点重叠系数 % 根据目标函数获得样本输入输出 rand('state',sum(100*clock)) NoiseVar = 0.1; Noise = NoiseVar*randn(1,SamNum); SamIn = 8*rand(1,SamNum)-4; SamOutNoNoise = 1.1*(1-SamIn+2*SamIn.^2).*exp(-SamIn.^2/2); SamOut = SamOutNoNoise + Noise; TestSamIn = -4:0.08:4; TestSamOut = 1.1*(1-TestSamIn+2*TestSamIn.^2).*exp(-TestSamIn.^2/2); figure hold on grid plot(SamIn,SamOut,'k+') plot(TestSamIn,TestSamOut,'r--') xlabel('Input x'); ylabel('Output y'); Centers = SamIn(:,1:ClusterNum); NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零 IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号 while 1, NumberInClusters = zeros(ClusterNum,1); % 各类中的样本数,初始化为零 IndexInClusters = zeros(ClusterNum,SamNum); % 各类所含样本的索引号 % 按最小距离原则对所有样本进行分类 for i = 1:SamNum AllDistance = dist(Centers',SamIn(:,i)); [MinDist,Pos] = min(AllDistance); NumberInClusters(Pos) = NumberInClusters(Pos) + 1; IndexInClusters(Pos,NumberInClusters(Pos)) = i; end % 保存旧的聚类中心 OldCenters = Centers; for i = 1:ClusterNum Index = IndexInClusters(i,1:NumberInClusters(i)); Centers(:,i) = mean(SamIn(:,Index)')'; end % 判断新旧聚类中心是否一致,是则结束聚类 EqualNum = sum(sum(Centers==OldCenters)); if EqualNum == InDim*ClusterNum, break, end end % 计算各隐节点的扩展常数(宽度) AllDistances = dist(Centers',Centers); % 计算隐节点数据中心间的距离(矩阵) Maximum = max(max(AllDistances)); % 找出其中最大的一个距离 for i = 1:ClusterNum % 将对角线上的0 替换为较大的值 AllDistances(i,i) = Maximum+1; end Spreads = Overlap*min(AllDistances)'; % 以隐节点间的最小距离作为扩展常数 % 计算各隐节点的输出权值 Distance = dist(Centers',SamIn); % 计算各样本输入离各数据中心的距离 SpreadsMat = repmat(Spreads,1,SamNum); HiddenUnitOut = radbas(Distance./SpreadsMat); % 计算隐节点输出阵 HiddenUnitOutEx = [HiddenUnitOut' ones(SamNum,1)]'; % 考虑偏移 W2Ex = SamOut*pinv(HiddenUnitOutEx); % 求广义输出权值 W2 = W2Ex(:,1:ClusterNum); % 输出权值 B2 = W2Ex(:,ClusterNum+1)
2020-02-24 03:01:02 8KB rbf算法源程序
1
先对xun.m运行,不断修改w,b和c;直到误差达到最小,将修改完的w,b和c,修改预测yuce.m中 的值。
2020-02-09 03:11:00 3KB matlab rbf ann sigmoi
1
在锂电池的放电,充电,SOC预测等方面均取得了不错得效果。
2020-02-04 03:09:55 5KB GA RBF
1