为了提高低照度图像的清晰度和避免颜色失真,提出了基于注意力机制和卷积神经网络(CNN)的低照度图像增强算法,以改善图像质量。首先根据Retinex模型合成训练数据,将原始图像从RGB (red-green-blue)颜色空间变换到HSI (hue-saturation-intensity)颜色空间,然后结合注意力机制和CNN构建A-Unet模型以增强亮度分量,最后将图像从HSI颜色空间变换到RGB颜色空间,得到增强图像。实验结果表明,所提算法可以有效改善图像质量,提高图像的清晰度,避免颜色失真,在合成低照度图像和真实低照度图像的实验中均能取得较好的效果,主观和客观评价指标均优于对比算法。
1