简介 1、本项目是在tensorflow版本1.14.0的基础上做的训练和测试。 2、本项目为中文的文本情感分析,为多文本分类,一共3个标签:1、0、-1,分别表示正面、中面和负面的情感。 3、欢迎大家联系我 4、albert_small_zh_google对应的百度云下载地址: 链接: 提取码:wuxw 使用方法 1、准备数据 数据格式为:sentiment_analysis_albert/data/sa_test.csv 2、参数设置 参考脚本 hyperparameters.py,直接修改里面的数值即可。 3、训练 python train.py 4、推理 python predict.py 知乎代码解读
1
The Rotten Tomatoes movie review dataset包含train.tsv >8M和test.tsv >3M两个文件 kaggle下载地址: https:// www.kaggle.com/c/sentiment analysis on movie reviews/data 分类标签如下: 0 negative 1 somewhat negative 2 neutral 3 somewhat positive 4 positive
1
亚马逊评论情绪分析 情感分析一直在增长-既由于深度学习中使用了新的分析技术,又因为到处都有大量的数据生成。 每条产品评论,每条推文,每条Reddit帖子等均包含我们希望能够处理和理解的主观信息。 例如,假设您是Netflix。 然后,您对客户对您的服务和电视节目/电影选择要说的话非常感兴趣,并且您可能会希望挖掘Facebook帖子和推文以及IMDB评论等,以评估公众意见。 如果您是一名政客,那么您(希望)对选民的想法,他们想要什么,他们持有哪些宝贵价值观等感兴趣,因此您可能会有一个团队来分析这些领域的公众情绪。 如果您是企业家,那么您会对公众舆论感兴趣,因为它关系到您的利基,产品和竞争,因为
1
Twitter情绪分析 这是一种自然语言处理问题,其中通过使用机器学习模型对消极消息中的消极消息进行归类来进行情感分析,以进行分类,文本挖掘,文本分析,数据分析和数据可视化 介绍 如今,自然语言处理(NLP)成为数据科学研究的温床,而NLP的最常见应用之一就是情感分析。 从民意测验到制定完整的营销策略,该领域已完全重塑了企业的运作方式,这就是为什么这是每个数据科学家都必须熟悉的领域。 与一组人手动完成相同任务所需的时间相比,可以在几秒钟内处理成千上万个文本文档的情感(以及其他功能,包括命名实体,主题,主题等)。 我们将按照解决一般情感分析问题所需的一系列步骤进行操作。 我们将从预处理和清理
1
Twitter股票交易员(NLP情绪分析) ( , ,( , 。 。 描述 此应用程序将基于用于情感分析的自然语言处理(NLP)算法实现股票的纸面交易。 应该注意的是,由于没有公司的其他情况,对公司使用推特React非常不稳定,并且在日内交易之外几乎没有用例。 该软件是按原样提供的,对于您因使用此程序而导致的任何后果,作者概不负责。 他们不对您因使用此程序尝试赚钱而愚蠢造成的损失负责,而不是对公司的财务记录进行尽职调查。 总览 该应用程序包含三个主要部分: 摄取引擎 接收引擎是应用程序的“前端”,可以持续运行,利用Twitter的从重要的股票金融服务获取最新更新,然后再将信息分批
2022-03-13 09:30:34 202KB nlp twitter sentiment-analysis stock-trading
1
ELIZA + ELIZA是自然语言对话程序,由Joseph Weizenbaum在1960年代描述。 ELIZA通过使用“ Mad Libs”风格的模式匹配和替换方法来模拟对话。 尽管Weizenbaum的意图是通过ELIZA来展示“在最初的精神病学访谈中无方向性心理治疗师的React表明人与机器之间的交流是肤浅的”,但用户实际上发现ELIZA很有说服力和治疗性。 我首先通过听说了ELIZA。 我发现计算机程序充当治疗师的想法非常吸引人。 治疗师很昂贵。 计算机程序可以无休止地倾听您的烦恼。 有时候,我们需要的只是写下我们的想法,并被提示以鼓励和非判断的方式继续写下我们的想法。 尽管ELIZA的响应最初仅限于文本,但计算的发展现在使我们能够轻松集成图形。 同样,自然语言处理方面的最新进展可以实现对用户响应的情感检测,从而创建更全面的聊天机器人体验。 我将ELIZA +做为ELIZA
1
LSTM文本分类情感分析 使用LSTM进行文本分类/情感分析。使用LSTM对数据执行文本分类/情感分析。这些推文已从Twitter撤出,然后进行了手动标记。列: 地点 鸣叫于 原始推文 标签
2022-03-04 22:50:53 4.77MB Python
1
Twitter情绪分析 该项目是关于使用Apache Spark结构化流,Apache Kafka,Python和AFINN模块对所需Twitter主题进行情感分析的。 您可以了解所需主题的情感状态。 例如; 您可能对《权力的游戏》的新剧集感到好奇,并且您可能先前已经获得了某人对该新剧集的意见。 根据意见,答案可以是负的,中性的或正的。 代码说明 身份验证操作已通过Python的Tweepy模块完成。 您必须从Twitter API获取密钥。 名为TweetListener的StreamListener是为Twitter Streaming创建的。 StreamListener为名为“ t
2022-03-03 20:17:40 3KB python twitter kafka spark
1
CSV格式的IMDB数据集(情感分析) IMDB电影评论数据集转换为CSV文件 Test.csv Train.csv Valid.csv
2022-03-02 16:41:58 25.3MB 数据集
1
sentiment-analysis-platform 基于LSTM的电商评论情感分析平台 技术要点: Java前端:Bootstrap4、jQuery Java后台:SpringBoot Python服务: Python3、Flask 数据库:MySQL、MongoDB 模型框架:Keras+TensorFlow 爬虫:selenium
2022-03-01 16:25:28 40.83MB JavaScript
1