Python学习机器学习的网络资源汇总,对于入门机器学习是一条捷径
2023-11-01 06:03:49 107KB Python 机器学习
1
第1章引言11.1 为何选择机器学习 11.1.1 机器学习能够解决的问题 21.1.2 熟悉任务和数据 41.4 必要的库和工具 51.6 本书用到的版本 1
2023-10-24 11:25:44 28.29MB
1
编辑 /  昱良 今天我们就来看看,在日常生活中有哪些最常见的机器学习用例(有时我们甚至没有意识到这些例子涉及机器学习)。本文涵盖了以下常见的机器学习用例: 1. 机器学习在智能手机中的用例 你知道吗,智能手机中的大多数功能都是由机器学习支持的。 没错!从帮你定闹钟、找餐厅的语音助手到通过面部识别解锁手机等一系列简单的功能-机器学习已经真正融入到了我们最喜欢的设备当中。 语音助手 还记得前文提到的虚拟智能小助手吗?它的原理就是语音识别概念——这是机器学习领域中的一个新兴话题。 现在语音助手已经很普遍了。你肯定用过(或者至少听过)以下常见的语音助手: • 苹果的Siri • 谷歌助手 • 亚
2023-09-20 07:02:06 685KB AI python机器学习 人工智能
1
1.项目基于机器学习算法,通过对单模型和融合模型计算所得的指标进行对比,实现小分子在人体内清除率指标的预测。 2.项目运行环境:Python环境、安装Jupyter Notebook 或Spyder、需要matplotlib、numpy、pandas 、sklearn安装包库 3.项目包括3个模块:数据预处理,创建模型并编译,模型训练 4.单模型训练:训练岭回归模型、随机森林模型和极端森林模型。 5. 多模型融合:回归问题最简单的模型融合方式,取加权平均对最优的两个模型进行不同权值的平均,最终输出最优的权值结果。 6. 不同模型的评价指标以rmse为指标,经过分析,融合模型得到最低的rmse,为2.698796237546118。
2023-09-20 06:59:59 10.72MB python 机器学习 算法 回归
1
本来想免费给的,我自己找了半天才找到资源,要是有些没有积分想要的可以留言给我,我发。本来就不想赚积分,只是这么点数据就要找来找去,很打击学习智能的积极性。下载下来改名字为txt,并且删除最后一行
2023-08-19 23:27:34 35KB python 机器学习
1
适用于大学生期末课程设计: 混凝土强度是指混凝土在特定条件下的抗压强度,通常用来评估混凝土的质量和可靠性。在工程建设中,混凝土强度的预测非常重要,可以帮助工程师和建筑师更好地评估结构的稳定性和安全性。 Python是一种流行的编程语言,可以用于开发各种类型的应用程序,包括科学计算、数据分析和机器学习等。在本项目中,我们将使用Python开发一个混凝土强度预测工具,以帮助工程师和建筑师更好地评估结构的稳定性和安全性。 本项目的基本思路是:首先,我们需要收集一些混凝土强度数据,包括混凝土的配比、龄期、强度等信息。其次,我们将使用Python的数据分析库来分析和处理这些数据,以便更好地理解和预测混凝土强度。最后,我们将使用Python的机器学习库来建立一个混凝土强度预测模型,以便更好地进行预测和评估。 以下是本项目的主要步骤: 1. 数据收集:首先,我们需要收集一些混凝土强度数据,包括混凝土的配比、龄期、强度等信息。可以从相关文献、数据库或实验室中获取这些数据。 2. 数据处理:接下来,我们将使用Python的数据分析库(例如Pandas)来处理这些数据,包括数据清洗、数据转换、数
2023-07-06 10:52:36 11KB python 机器学习
1
RealTime3DPoseTracker-OpenPose 使用OpenPose,Python机器学习工具包,Realsense和Kinect库进行实时3D姿势跟踪和手势识别。 安装步骤:OpenPose和PyOpenPose机器:4 GPU,GeForce GTX 1080操作系统:Ubuntu 16.04 克隆OpenPose存储库:“ git clone ” 通过以下链接从PyOpenPose检查当前集成的OpenPose版本:https://github.com/FORTH-ModelBasedTracker/PyOpenPose 通过以下方式将OpenPose版本重置为此提交:git reset --hard #version 下载并安装CMake GUI:sudo apt-get install cmake-qt-gui 安装CUDA 8:sudo apt-g
2023-06-21 09:59:23 21KB Python
1
机器学习大作业--基于线性回归的PM2.5预测 收集合肥地区过去一段时间(例如过去一年每个月的平均值)的空气质量(例如pm2.5值),然后构建回归模型,能够预测今年某个月的空气质量值 使用模型 线性回归模型 矩阵模型 梯度下降公式
python实现决策树(CART算法),使用西瓜数据集,参考《机器学习》和统计学习方法实现决策树算法。
2023-05-22 17:30:46 11KB python 机器学习
1
@参考Python 机器学习基础教程 鸢尾花分类 一个简单的机器学习应用,构建第一个模型。 对鸢尾花的分类,根据测量数据进行,该测量数据则为特征。测量数据:花瓣的长度和宽度、花萼的长度和宽度,所有测量结果的单位为cm 我们的目标是构建一个机器学习模型 因为有已知品种的鸢尾花的测试数据,所以这是一个监督学习问题。我们要在多个选项中预测其中一个(品种)。这是一个分类(classsification)问题。可能的输出(鸢尾花的不同品种)叫做类别(class)。数据集中共有三个类别(setosa、versicolor、virginica)。对于一个数据点来说,它的品种叫做标签(label)。 1、初识
2023-04-21 20:06:58 865KB python python机器学习 python算法
1