自动股票交易的深度强化学习:整体策略 该存储库提供了代码 的Jupiter Notebook重新实现了这种整体策略。 抽象的 股票交易策略在投资中起着至关重要的作用。 但是,在复杂而动态的股票市场中设计一种有利可图的战略是具有挑战性的。 在本文中,我们提出了一种深度集成强化学习方案,该方案可以通过最大化投资回报来自动学习股票交易策略。 我们训练一种深度强化学习代理,并使用三种基于行为者批评的算法来获得整体交易策略:近距离策略优化(PPO),优势参与者批评者(A2C)和深度确定性策略梯度(DDPG)。 集成策略继承并集成了三种算法的最佳功能,从而可以稳健地适应不同的市场条件。 为了避免在具有连续动作空间的训练网络中消耗大量内存,我们采用按需加载方法来处理非常大的数据。 我们在30支具有足够流动性的道琼斯股票上测试了我们的算法。 评估了具有不同强化学习算法的交易代理商的表现,并与道琼斯工业平均
1
司机批评家 OpenAI Gym的CarRacing-v0环境解决方案。它使用DDPG算法(深度确定性策略梯度)。 快速开始 依存关系: 健身房0.18.0 Tensorflow 2.4.0 Matplotlib 3.3.4 当前版本的CarRacing-v0存在内存错误。为了解决这个问题,我们需要从Gym GitHub手动下载最新的“ car_racing.py”脚本。 正在运行的应用程序: 执行“ main_loop.py”以训练新模型。按空格键观看进度 可以通过运行“ evaluate_loop.py”来检查最佳解决方案。 解决方案 DDPG由4个网络组成: 演员-玩游戏 评论家-评估演员 目标演员和目标评论家-产生学习目标值 参考: : 它旨在创建一个基类,它将成为每个连续动作任务的基础。通过继承基类,可以轻松实现更复杂的解决方案。 CarRacing-v0是一种计算机视
2021-06-07 16:17:47 377KB Python
1
强化学习的新书。基于Openai gym,Openai gym是一个用于开发和比较RL算法的工具包。
2020-01-03 11:18:40 12.92MB 强化学习
1
Hands-On Intelligent Agents with OpenAI Gym_ Your guide to developing AI agents using deep reinforcement learning
2019-12-21 21:19:52 12.88MB OpenAI
1