主要介绍了浅谈Python中range与Numpy中arange的比较,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-03-28 22:29:23 61KB Python Numpy arange
1
包括 Python基Numpy础入门、文件导入、Numpy、Pandas、Sklearn、Scipy、spaCy、matplotlib、keras等。
2024-03-15 16:04:10 7.69MB python cheatsheet
1
树莓派 armv71架构,对应python3.7的numpy的whl文件
2024-03-02 10:36:04 11.75MB numpy python
1
如下所示: from PIL import Image import numpy as np # 反相 # a = np.array(Image.open("test.jpg")) # b = [255, 255, 255] - a # 灰度,反相 # a = np.array(Image.open("test.jpg").convert('L')) # b = 255 - a # 灰度,颜色变谈 # a = np.array(Image.open("test.jpg").convert('L')) # b = (100/255)*a + 150 # 区间压缩再增加 # 灰度,颜色加重 #
2024-02-23 17:20:41 35KB numpy
1
作者 项目 文献资料 建置状态 代码质量 覆盖范围 NumPyNet Linux / MacOS : Windows : 编码: 编码节拍: 纯NumPy中的神经网络-NumPyNet 在神经网络模型的纯Numpy中实现。 NumPyNet支持语法非常接近Keras之一,但它使用只写了Numpy功能:这种方式很轻,快速安装和使用/修改。 理论 先决条件 安装 效率 用法 贡献 参考 作者 执照 致谢 引文 概述 NumPyNet是作为研究神经网络模型的教育框架而诞生的。 编写该指南的目的是平衡代码的可读性和计算性能,并提供大量文档,以更好地理解每个脚本的功能。 该库是用纯Python编写的,唯一使用的外部库是Numpy (科学研究的基本软件包)。 尽管所有常见的库都通过广泛的文档进行了关联,但对于新用户而言,通常很难在其中引用的许多超链接和论文中四处移动。 NumPyNet试
1
NumpyDL:Numpy深度学习库 内容描述 NumpyDL是: 基于纯Numpy / Python 对于DL教育 特征 其主要特点是: 纯洁的脾气暴躁 原生于Python 基本支持自动区分 提供了常用的模型:MLP,RNN,LSTM和CNN 几个AI任务的示例 对于玩具聊天机器人应用 文献资料 可用的在线文档: 最新文件 开发文档 稳定文档 可用的离线PDF: 最新PDF 安装 使用pip安装NumpyDL: $ > pip install npdl 从源代码安装: $ > python setup.py install 例子 NumpyDL提供了一些AI任务示例: 句子分类 示例/lstm_sentence_classification.py中的LSTM 例子中的CNN / cnn_sentence_classification.py mnist手写识
2024-02-23 17:06:34 16.61MB deep-neural-networks deep-learning
1
如果下载numpy过慢,可以下载这个资源,直接在命令行输入pip install numpy-1.24.4-cp38-cp38-win_amd64.whl,即可一秒安装成功。
2024-02-23 16:25:09 14.18MB numpy
1
今天小编就为大家分享一篇关于numpy数组轴的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2024-02-16 22:49:41 74KB numpy
1
NumPy(Numerical Python)是一个开源的Python科学计算库,它为Python提供了高效的多维数组对象(ndarray)以及用于处理数组的各种函数和工具。 使用NumPy,你可以进行各种数值计算和数据分析任务,包括: 多维数组操作:NumPy的核心是ndarray对象,它支持高效的多维数组运算。你可以使用NumPy进行数组的创建、索引、切片、重塑、合并以及广播等操作。 数值计算:NumPy提供了大量的数学函数,包括基本的数学运算、三角函数、指数和对数运算、线性代数运算、统计函数等。这些函数可以直接作用于数组,使得数值计算更加高效和方便。 数据处理:NumPy可以处理大规模的数据集,包括数据的读取、过滤、排序、去重、统计以及聚合等。你可以使用NumPy对数组进行逐元素操作,也可以使用矢量化操作对整个数组进行处理。 随机数生成:NumPy内置了强大的随机数生成函数,包括各种概率分布的随机数生成、随机排列、随机抽样等。这些函数对于模拟实验、蒙特卡洛方法和随机算法等场景非常有用。 动态内存管理:NumPy封装了底层的C/C++代码,通过使用动态内存管理和优化的算
2024-02-16 22:44:17 26.67MB numpy
1
机器学习 numpy pandas 基础
2024-02-13 22:59:51 9.85MB numpy 机器学习 pandas
1