用PyTorch实现MNIST手写数字识别(整套流程,附对应源码文件)简单小例子 环境配置 在开始之前,我们需要进行一些环境配置,包括安装PyTorch、numpy和matplotlib等必要的Python库。 安装Anaconda 我们可以从官网下载适合自己系统的Anaconda安装包,安装时需要勾选添加环境变量选项。 创建环境 在Anaconda Prompt中输入以下命令: conda create --name pytorch_env python=3.8 该命令将创建一个名为pytorch_env的环境,并使用Python 3.8版本。
2023-04-07 21:25:47 6KB pytorch pytorch 软件/插件
1
Fashion-MNIST是一个用来进行机器学习和深度学习的测试数据集,它由类似于MNIST的手写数字图像数据集演变而来,但是每一张图像都代表了10类服装类型之一,包括T恤、裤子、套衫、连衣裙、外套、凉鞋、衬衫、运动鞋、包和靴子。 基于卷积神经网络的Fashion-MNIST图像识别,通常指的是使用卷积神经网络来对Fashion-MNIST数据集中的图像进行分类。在这种情况下,我们需要训练一个卷积神经网络模型,让它能够根据图像的特征来预测图像所属的类别。 为了实现这个目标,我们需要以下步骤: 1. 准备Fashion-MNIST数据集,包括训练集、验证集和测试集。 2. 构建一个卷积神经网络模型,包括两个卷积层和全连接层。 3. 使用训练集对模型进行训练,通过反向传播算法来更新模型参数。 4. 使用验证集对训练好的模型进行评估,并通过可视化工具来观察模型的训练曲线和验证曲线。
2023-03-29 13:56:56 150KB 机器学习
1
数字识别是扫描文档并将其转换为电子格式的过程中必不可少的元素。 在这项工作中,正在提出一种新的多像元大小(MCS)方法,以利用定向梯度直方图(HOG)特征和基于支持向量机(SVM)的分类器对手写数字进行有效分类。 基于HOG的技术对在相关特征提取计算中使用的像元大小选择很敏感。 因此,一种新的MCS方法已用于执行HOG分析和计算HOG功能。 该系统已经在基准MNIST手写数字基准数据库上进行了测试,使用独立测试集策略已达到99.36%的分类精度。 还使用10折交叉验证策略对分类系统进行了交叉验证分析,并且获得了10折分类精度为99.26%。 所提出的系统的分类性能优于使用复杂过程的现有技术,因为在特征空间和分类器空间中使用简单的操作已达到了同等或更好的结果。 该系统的混淆矩阵图和接收器工作特性(ROC)图显示了所提出的基于MCS HOG和SVM的新型数字分类系统的优越性能。
1
手写数字识别 使用Tensorflow.js,Mnist数据集,React,Redux,Redux-Saga,Babel,Webpack,样式化组件,Eslint,Prettier和Ant Design构建的数字识别。 可以在以下位置获得演示: : 。 影片 手机(iOS和Android)版本: 桌面版: 设定环境 该项目基于JavaScript环境,您需要使用Yarn或NPM安装依赖项: $ yarn install 在本地启动 $ yarn start $ Open https://localhost:9000 with your favorite browser 量产 $ yarn build 作者
2023-03-26 10:58:29 4.65MB react redux babel webpack
1
深度学习常用数据集,共有7万张图片。其中6万张用于训练神经网络,1万张用于测试神经网络。 每张图片是一个28*28像素点的0~9的手写数字图片。 黑底白字。黑底用0表示,白字用0~1之间的浮点数表示,越接近1,颜色越百。
2023-03-24 20:04:53 11.06MB 深度学习 数据集
1
表格形式(CSV)的mnist训练测试集,大部分电子表格和数据分析软件兼容形式 包括mnist_test.csv、mnist_train.csv、mnist_test_10.csv、mnist_train_100.csv mnist_train.csv、mnist_test.csv分别有60000、10000个标记样本集 mnist_test_10.csv、mnist_train_100.csv则只有10条100条记录是上面的子集 在深入研究前我们常用子集验证算法再用完整集
2023-03-15 19:42:25 13.61MB 人工智能 深度学习 神经网络
1
mnist手写数字的数据集,将原数据集转换为bmp格式的图片
2023-03-15 13:50:25 12.62MB mnist
1
MNIST is provided by NYU, Google Labs and Microsoft Research.本数据集由纽约大学、谷歌实验室和微软研究所提供。 mnist_t10k-images-idx3-ubyte.gz mnist_t10k-labels-idx1-ubyte.gz mnist_train-labels-idx1-ubyte.gz mnist_train-images-idx3-ubyte.gz
2023-03-03 20:25:22 11.06MB 数据集
1
tensorflow 数据集 下载后直接使和,修改load方法的参数,例: mnist_train = tfds.load(name="mnist", split="train",data_dir = "/usr/python/tensorflow_datasets",download=False)
2023-02-22 13:44:27 38.08MB tensorflow datasets mnist python
1
mnist数据集的图片格式,model.py文件为将mnist数据集转化为图片的代码,将其与mnist.pkl.gz放在同一文件夹之下运行py文件即可(python2.7版本)
2023-02-20 20:46:57 1KB mnist图片
1