VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION非常经典的VGG-NET框架就是出自这篇文章
2021-11-25 22:36:44 195KB VGG-NET
1
新加坡国立大学最新「大规模深度学习优化」综述论文,带你全面了解最新深度学习准确率和效率的优化方法 【导读】深度学习优化是构建深度学习模型中的一个关键问题。来自NUS的研究人员发布了《大规模深度学习优化》综述论文,DL优化目标是双重的: 模型准确性和模型效率。至于模型的准确性,研究了最常用的优化算法,从梯度下降变量到(大批量)自适应方法,从一阶方法到二阶方法。此外,还阐述了在大批量训练中出现的泛化差距这一有争议的问题。 深度学习在人工智能的广泛应用中取得了可喜的成果。更大的数据集和模型总是产生更好的性能。然而,我们通常花更长的训练时间在更多的计算和通信上。在这项综述中,我们的目标是提供一个清晰的草图,关于优化大规模深度学习的模型准确性和模型效率。我们研究最常用于优化的算法,阐述大批量训练中出现的泛化缺口这一有争议的话题,并回顾SOTA解决通信开销和减少内存占用的策略。
2021-11-24 13:07:11 988KB
1
任务4:智能汽车的大型弱监督声音事件检测 协调员 本杰明·埃里扎德(Benjamin Elizalde),伊曼纽尔·文森特(Emmanuel Vincent),比克莎·拉吉(Bhiksha Raj) 数据准备,注释 Ankit Shah( ),Benjamin Elizalde( ) 注释,基线和子任务的度量 Rohan Badlani( ),Benjamin Elizalde( ),Ankit Shah( ) 指数 直接下载开发和评估套件的音频 用于下载任务4的开发数据的脚本 评估任务4的脚本-子任务A(音频标记)和子任务B Strong Label的测试注释 1.直接下载用于开发和评估集的音频 评估集的注释尚未发布。 可以通过向Ankit Shah( )或Benjamin Elizalde( )发送请求电子邮件来共享密码。 (Psswd培训文件:DCASE_2017_
2021-11-11 11:04:54 2.39MB machine-learning acoustics dcase dcase2017
1
异构网络中的联合优化 该存储库包含本文的代码和实验: 联合学习是一种分布式学习范例,它具有两个与传统的分布式优化不同的关键挑战:(1)网络中每个设备的系统特性方面的显着可变性(系统异质性),以及(2)不完全相同的分布式数据跨网络(统计异质性)。 在这项工作中,我们引入一个框架FedProx,从理论上和经验上解决联邦网络中的异构性。 该存储库包含一组针对联合数据集的详细的经验评估。 我们证明FedProx比FedAvg具有更强大的收敛性。 特别是,在高度异构的环境中,FedProx展示了相对于FedAvg而言更加稳定和准确的收敛行为-将绝对测试准确度平均提高了22%。 一般准则 请注意,如果您想使用FedProx作为基准并运行我们的代码: 如果使用不同的数据集,则至少需要根据您的指标调整学习率和mu参数。 您可能希望从{0.001,0.01,0.1,0.5,1}调整mu。 没有适用于所有
1
Going_Native__Using_a_Large-Scale_Analysis_of_Android_Apps_to_Create_a_Practical_Native-Code_Sandboxing_Policy 网络安全 安全管理 APT 移动安全 安全对抗
Large-Scale C++ Software Design【中文版】 很清晰的电子书
2021-09-01 09:57:06 10.28MB 程序设计
1
Data processing, implementing related algorithms, tuning, scaling up and finally deploying are some crucial steps in the process of optimising any application. Spark is capable of handling large-scale batch and streaming data to figure out when to cache data in memory and processing them up to 100 times faster than Hadoop-based MapReduce.This means predictive analytics can be applied to streaming and batch to develop complete machine learning (ML) applications a lot quicker, making Spark an ideal candidate for large data-intensive applications. This book focuses on design engineering and scalable solutions using ML with Spark. First, you will learn how to install Spark with all new features from the latest Spark 2.0 release. Moving on, you’ll explore important concepts such as advanced feature engineering with RDD and Datasets. After studying developing and deploying applications, you will see how to use external libraries with Spark.
2021-08-27 14:51:14 11.47MB Spark Machine Learning
1
Large-Scale C++ Software Design Large-Scale C++ Software Design
2021-08-14 11:45:21 16.63MB Large-Scale C++ Software Design
1
Large-scale decentralized unit commitment_check integer ADMM
2021-08-03 17:00:24 795KB ieee论文
1
Large-Scale.CPP.Volume.I.Process.and.Architecture.2019.12.pdf
2021-07-11 17:02:02 38.78MB 比特币
1