在本作业中,我们主要探讨了如何配置IntelliJ IDEA环境以及使用Scala和Apache Spark实现PageRank算法。PageRank是Google早期用于网页排名的核心算法,它通过迭代计算每个网页的重要性,从而提供搜索引擎的搜索结果排序。 首先,我们需要搭建一个win10系统上的开发环境,包括安装Scala、Spark和Hadoop。完成环境搭建后,可以通过访问`http://127.0.0.1:4040/jobs/`来监控Spark作业的运行状态,确保环境配置成功。 接着,我们需要配置IntelliJ IDEA,这是一个强大的Java开发集成环境,也支持Scala等其他编程语言。配置IDEA主要包括安装Scala插件,设置Scala SDK,创建新的Scala项目,并配置Spark相关依赖。这样,我们就可以在IDEA中编写、编译和运行Scala代码。 PageRank算法是基于迭代的过程,它涉及到两个关键数据集:links和ranks。links数据集存储了页面之间的链接关系,例如(A, [B, C, D])表示页面A链接到B、C和D。而ranks数据集则记录了每个页面的PageRank值,初始时所有页面的PageRank值都设为1.0。 PageRank算法的主要步骤如下: 1. 初始化:将每个页面的PageRank值设为1.0。 2. 迭代计算:在每一轮迭代中,每个页面会将其PageRank值按照链接数量平均分配给相连的页面。假设页面p的PageRank值为PR(p),链接数为L(p),则p会给每个相邻页面贡献PR(p)/L(p)的值。 3. 更新PageRank:每个页面的新PageRank值由0.15的“随机跳跃”因子加上接收到的贡献值的0.85倍计算得出。这个公式保证了即使没有被其他页面链接的页面也能获得一定的PageRank值。 4. 迭代直到收敛:算法会重复上述步骤,通常在10轮迭代后,PageRank值会趋于稳定。 在给出的Scala代码中,我们创建了一个SparkConf对象,设置了应用程序名和主节点,然后创建了SparkContext实例。接着,我们使用Spark的parallelize方法创建了一个links的RDD,表示页面间的链接关系。初始ranks RDD中的PageRank值被设为1.0。接下来的for循环进行PageRank迭代计算,使用join、flatMap、reduceByKey等操作处理数据,最后将计算结果保存到"result"文件夹下。 运行结果会被保存在名为"part-000000"的文件中,这是Spark默认的输出格式,包含了每个页面及其对应的PageRank值。在IDEA环境下,可以直接查看这些输出结果,以便分析和验证PageRank算法的正确性。 总之,本作业涵盖了环境配置、Scala编程以及PageRank算法的实现,提供了从理论到实践的完整体验。通过这个过程,我们可以深入理解分布式计算的基本操作,以及PageRank算法如何评估网页的重要性。
2024-06-23 23:10:34 375KB windows scala spark hadoop
1
springboot+echarts做大数据展示 scrapy数据采集 spark数据分析处理 包含java项目,数据采集项目,spark处理代码,数据库文件,数据源文件,项目演示截图等等
2024-06-21 20:25:20 71.21MB 数据采集
1
spark-2.0.0-bin-hadoop2.7.tgz.zip 提示:先解压再使用,最外层是zip文件
2024-06-20 17:18:50 177.76MB spark
1
spark的调优案例分享
2024-06-16 19:38:07 4.38MB spark
1
linux的spark新版本,匹配hadoop2.7版本,spark-3.2.1-bin-hadoop2.7.tgz
2024-06-12 19:45:48 260.01MB spark linux
1
此套面试题来自于各大厂的真实面试题及常问的知识点,如果能理解吃透这些问题, 你的大数据能力将会大大提升,进入大厂指日可待,包含Hadoop spark flink hive hbase kafka doris clickhouse
2024-06-10 23:58:37 2.1MB hadoop spark
1
spark考试(练习题)编程!
2024-05-29 09:51:45 152KB spark
1
随着大数据技术的发展,各大中型企业陆续建立起自己的大数据平台,依托大数据平台的海量数据存储处理能力和数据分析能力,研发各种大数据应用,但大数据平台与传统信息系统有着较大差异,需要对以往的运维体系进行调整,才能更好的适应大数据平台的运维需求.本文分析大数据平台运维体系工作,对比与传统信息系统的运维差异,关注大数据平台运维管理中的重点,为运维团队构建提出建议
2024-05-28 14:32:19 41KB hadoop 运维 实施规范 大数据平台
1
基于Hadoop的MapReduce并行apriori算法,实验设计在3台虚拟机上,搭建步骤:(1) 虚拟机上安装ubuntu系统,安装JDK、SSH、Hadoop。 (2) 配置JDK、Hadoop环境变量及MapReduce组件。 (3) 配置SSH免密登录。 (4) 使用hadoop namenode -format命令格式化NameNode,使用start-all.sh命令启动所有Hadoop进程。 (5) 在各节点命令行输入jps检查是否启动成功,若成功,使用wordcount示例进行测试,Hadoop平台搭建完成。 (6) 将数据集从本地传输到HDFS上,使用hadoop jar命令,输入驱动类规定参数,使用Apriori.jar包,运行AprioriDriver驱动类,实现算法效果。 (7) 运行结束使用hadoop fs -cat /output命令查看结果。
2024-05-23 22:38:14 1.63MB Hadoop MapReduc Apriori 大数据并行算法
1
hadoop-2.6.1.tar.gz
2024-05-23 17:36:52 187.98MB hadoop
1