用于面部特征检测的 OpenCV 存储库 该存储库托管 OpenCV C++ 程序,用于检测最常见的面部特征,例如: 眼睛 眉毛 外唇轮廓 面部特征检测将进一步用于情感分类。
2022-03-04 08:55:07 207KB C++
1
面部标志检测引擎 HRNet的TensorFlow实现,用于面部标志检测。 观看此演示视频: 。 特征 支持多个公共数据集:WFLW,IBUG等。 先进的模型架构:HRNet v2 数据扩充:随机缩放/旋转/翻转 模型优化:量化,修剪 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件 正在安装 获取培训的源代码 # From your favorite development directory git clone --recursive https://github.com/yinguobing/facial-landmark-detection-hrnet.git 生成训练数据 有多个可用的公共面部标记数据集,可用于生成我们需要的训练热图。 对于此训练过程,图像将被放大。 第一步是将数据集转换为更易于处理的更均匀的分布。 您可以自己执行
2022-03-01 13:20:51 23.12MB Python
1
在疯狂的实验中唇读 该存储库包含我在Keras中使用深度学习进行唇读的实验。 我训练并测试。 进程-lrw / 将LRW数据集中的视频转换为以下代码的代码:-与单词有关的帧-这些帧的嘴巴区域-音频 目录中的README文件中提供了说明。 形状预测器/ 放置process-lrw和head-pose所需的“ shape_predictor_68_face_landmarks.dat”文件的目录 图像检索/ 代码和文件---将lipreader视为图像检索系统 头姿势/ 代码和文件---计算LRW数据集中所有帧的头部姿势(使用process-lrw提取) 头部姿势是使用 (我的叉子)确定的。 目录中的README文件中提供了说明。
2022-02-22 23:04:07 133.4MB deep-learning facial-landmarks lip-reading Python
1
面部识别 使用TensorFlow进行面部表情识别 介绍 深度学习的面部表情识别。 使用TensorFlow 1.4实现CNN(卷积神经网络)。 代号 Test_Images:用于测试模型的图像目录。 Train_Images:用于转换神经网络的图像目录。 collect_images.py:从Bing和Google收集面部图像。 convert_images.py:将图像文件(* .jpg,*。jpeg, .png)转换为数据集文件( .bin)。 dataset.py:用于训练或测试神经网络的数据集类。 cnn.py:创建CNN并对其进行训练或对图像进行分类。 运行代码示例 将图像转换为数据集 >>> import convert_images as ci >>> ci.IMAGES_DIR = './Train_Images' >>> ci.main('./train.b
1
ets 此存储库为AUNets提供了PyTorch实现。 AUNets依赖于每个面部表情具有独立的和二进制的CNN的功能。 它适用于整体面部图像,即无需关键点或面部矫正。 项目页面: : 引文 @article{romero2018multi, title={Multi-view dynamic facial action unit detection}, author={Romero, Andr{\'e}s and Le{\'o}n, Juan and Arbel{\'a}ez, Pablo}, journal={Image and Vision Computing}, year={2018}, publisher={Elsevier} } 用法(火车) $./main.sh -GPU 0 -OF None # It will train AUNets (1
1
Facial AR Remote IOS 端 XCODE 12.1。需要手机iphone x以上即可运行面部捕捉
2022-01-05 10:13:38 214.66MB FacialARRemote 面部捕捉
1
Facial Action Recognition for Facial Expression.....
2022-01-03 16:15:26 810KB 表情识别
1
lda分类代码matlab 面部识别 在MATLAB中实现基本分类器(Bayes'、K-Nearest Neighbors、PCA、LDA),实现人脸识别。 介绍 有关作业的正式定义,请参阅项目。 有关结果的摘要,请参阅我的 . 如何运行代码 为了保持代码的可读性和模块化,每个分类器和降维技术都在位于目录中的单独 MATLAB 函数中实现。 帮助函数方便地位于目录中。 该脚本位于代码目录的顶层。 我将脚本分为以下几个部分: 预处理数据 负载变量 划分数据(训练和测试) 贝叶斯分类 K-最近邻分类 主成分分析 (PCA) PCA后的贝叶斯分类 PCA 后的 K 最近邻分类 Fisher 线性判别分析 (LDA) LDA后的贝叶斯分类 LDA后的K-最近邻分类 主文件包含不同情况的初始条件和参数。 要测试不同的功能,只需修改这些状态​​条件变量。 该脚本可以完整运行,也可以一次运行一个部分,以观察和分析给定部分的结果。 在脚本的末尾,每种分类技术的结果都显示在一个表格中。 下面是在人脸数据集上运行整个脚本时的示例表。 所有输入数据都可以在.mat文件形式的目录中找到。 如需任何帮助或说明,
2021-12-30 16:33:29 9.51MB 系统开源
1
面部表情识别 一个用于识别实时网络摄像头图像上面部表情的卷积神经网络。 安装 该实现已通过Python 3.6.3进行了测试。 您可以根据需要使用conda或virtualenv创建全新的虚拟环境。 TensorFlow 正式conda ,因此pip用于软件包管理。 所有依赖项都可以在requirements.txt文件中找到。 激活Python 3环境后,您可以使用以下命令安装要求 pip install -r path/to/requirements.txt 实时预测 如果您的计算机装有网络摄像头,则可以即时计算预测。 脱下眼镜和帽子,开始进行实时预测 python webcam.py 训练 如果您想自己训练Tensorflow CNN,则需要从kaggle和获取。 对于CK +,您可以使用ckplus_to_csv.py脚本自动检测所有面Kong,解析灰度强度并将所有CK图像收集到
2021-12-30 14:38:45 225.29MB JupyterNotebook
1
A Compact Embedding for Facial Expression Similarity, CVPR2019
2021-12-28 09:09:42 770KB Expression
1