集成学习则是机器学习的首要热门方向[1]。集成学习是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合从而获得比单个学习器更好的学习效果的一种机器学习方法.
2021-12-22 20:12:39 234KB 数据挖掘 enseble learning 整体学习
1
作业1-数据科学2 @ CEU 2020-2021 由 该包含在为DS2课程的首次作业分配最终HTML报告时使用的所有代码,数据文件和输出。建议将整个存储库以ZIP格式下载,或将其克隆到本地计算机上,并将其根文件夹设置为R Project。这将使您无缝运行代码和功能。 特别鸣谢: 在他的课程中提供了进行数据分析的代码,功能和指南的框架 提供的辅助函数框架
2021-12-22 16:03:57 3.08MB HTML
1
ensemble_kalman_filter python ensemble_kalman_filter.py 结果 集成卡尔曼滤波器(粒子数= 20) 作为参考, (粒子数= 20) 参考 片山,“非线性卡尔曼滤波器”,2011,p121-p140(日文)
1
在集成机器学习中,我们结合专家的决策来得出比单个决策更好的决策。 组合这些决策的过程可以像多数投票或简单平均一样简单,也可以更复杂,涉及多个步骤。 在本文中,我们考虑将集成机器学习应用于根据多个专家的个人决策构建投资组合的问题。 我们将比较通过简单平均和新颖的多级决策算法构建的投资组合的性能。 这种新算法从单个投资组合中的股票子集构建投资组合。 与这些单独的投资组合和通过简单平均构建的投资组合相比,通过所提出的方法构建的投资组合可能会导致更高的年化回报和适度的波动性增加。 我们对新方法的可行性进行了广泛的数值比较。
2021-12-16 14:14:09 706KB Machine Learning Ensemble
1
现在大多数人更喜欢互联网获取新闻,因为它既简单又便宜,但这导致假新闻的传播速度非常快。 假新闻通常是别有用心的,目的是为了获得经济、政治等方面的利益,大多数时候都有一个吸引用户的吸引人的标题,或者也可能是偶然的。 但它对人们的影响太大了。 如今,假新闻检测已成为一个具有挑战性的话题。 在这项工作中,我们使用从 POLITIFACT.COM 收集的 LIAR 数据集进行假新闻检测,该数据集可公开使用,提供每个案例的源文档链接。 在之前的所有工作中,该数据集的准确率都在 30% 左右。 在这项工作中,我们使用模型集成技术来提高使用 LIAR 数据集预测假新闻的准确性。 我们还尝试将问题陈述简化为二元分类,并部署了相同的集成技术,以便为准确计算提供更好的现实方法。
2021-12-08 17:24:08 894KB Ensemble Fake
1
Big_Data_Project-伪造新闻检测 在这个项目中,我们展示了使用机器学习算法进行文本分类。 我们致力于对给定的新闻文章是假的还是真实的进行分类。 数据清理和预处理: 删除了文本中的特殊字符拼写检查了所有文档删除了停用词对文档进行矢量化处理。 向量化 对于矢量化,我们使用了-计数矢量化器,TFIDF矢量化器,哈希矢量化器。 分类 对于分类目的,我们使用了:多项朴素贝叶斯,支持向量机(LinearSVC),PassiveAgressiveClassifier。 我们比较了矢量化器和分类器的性能。 最后,我们使用集成模型来获得更高的精度。 我们使用scikit-learn最大投票分类器
1
集成学习是通过集成多个基分类器共同决策的机器学习技术,通过不同的样本集训练有差异的基分类器,得到的集成分类器可以有效地提高学习效果。在基分类器的训练过程中,可以通过代价敏感技术和数据采样实现不平衡数据的处理。由于集成学习在不平衡数据分类的优势,针对不平衡数据的集成分类算法得到广泛研究。详细分析了不平衡数据集成分类算法的研究现状,比较了现有算法的差异和各自存在的优点及问题,提出和分析了有待进一步研究的问题。
1
堆叠(堆叠概括) 总览 简单实用的堆叠库,用Python编写。 用户可以使用scikit-learn,XGboost和Keras的模型进行堆叠。 作为该库的功能,训练后可以保存所有失叠的预测以供进一步分析。 描述 (有时被称为堆叠泛化)涉及训练学习算法的其他几个学习算法的预测结合起来。 基本思想是使用一组基础分类器,然后使用另一个分类器组合其预测,以减少泛化误差。 对于理解堆栈和集成学习非常有帮助。 用法 请参阅工作示例: 要运行这些示例,只需运行sh run.sh 注意: 在数据/输入下设置训练和测试数据集 从原始数据集创建的要素必须位于数据/输出/要素下 堆栈模型在scripts文件夹下的scripts.py中定义 需要在该脚本中定义创建的功能 只需运行sh run.sh ( python scripts/XXX.py )。 详细用法 设置火车数据集及其目标数据和测试数据集。 FEATURE_LIST_stage1 = { 'train' :( INPUT_PATH + 'train.csv'
2021-11-24 09:51:14 2.16MB scikit-learn prediction xgboost ensemble
1
VisDrone(无人机航拍图像目标检测)的对象检测 我的环境 1,Windows10(可使用Linux) 2,tensorflow> = 1.12.0 3,python3.6(anaconda) 4,cv2 5,合奏盒(pip安装合奏盒) 数据集(训练集的XML格式) (1)。数据集可从(2)。请在(提取码:ia3f)或上下载xml批注,然后在./core/config/cfgs.py中进行配置(3)。您还可以使用./data/visdrone2xml.py生成您的visdrone xml文件,修改路径信息。 training-set format: ├── VisDrone2019-DET-train │ ├── Annotation(xml format) │ ├── JPEGImages 预训练模型(ResNet50vd,101vd) 请在(krce)或上下载
2021-11-16 10:51:13 557KB tensorflow object-detection fpn cascade-rcnn
1
Ensemble methodology imitates our second nature to seek several opinions before making a crucial decision. The core principle is to weigh several individual pattern classifiers, and combine them in order to reach a classification that is better than the one obtained by each of them separately. Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methods since the late seventies. Given the growing interest in the field, it is not surprising that researchers and practitioners have a wide variety of methods at their disposal. Pattern Classification Using Ensemble Methods aims to provide a methodic and well structured introduction into this world by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. Its informative, factual pages will provide researchers, students and practitioners in industry with a comprehensive, yet concise and convenient reference source to ensemble methods. The book describes in detail the classical methods, as well as extensions and novel approaches that were recently introduced. Along with algorithmic descriptions of each method, the reader is provided with a description of the settings in which this method is applicable and with the consequences and the trade-offs incurred by using the method. This book is dedicated entirely to the field of ensemble methods and covers all aspects of this important and fascinating methodology.
2021-11-06 23:15:00 1.96MB Ensemble Methods
1